{"title":"A modification of the periodic nonuniform sampling involving derivatives with a Gaussian multiplier","authors":"Rashad M. Asharabi, Mustafa Q. Khirallah","doi":"10.1007/s10092-024-00589-x","DOIUrl":null,"url":null,"abstract":"<p>The periodic nonuniform sampling series, involving periodic samples of both the function and its first <i>r</i> derivatives, was initially introduced by Nathan (Inform Control 22: 172–182, 1973). Since then, various authors have extended this sampling series in different contexts over the past decades. However, the application of the periodic nonuniform derivative sampling series in approximation theory has been limited due to its slow convergence. In this article, we introduce a modification to the periodic nonuniform sampling involving derivatives by incorporating a Gaussian multiplier. This modification results in a significantly improved convergence rate, which now follows an exponential order. This is a significant improvement compared to the original series, which had a convergence rate of <span>\\(O(N^{-1/p})\\)</span> where <span>\\(p>1\\)</span>. The introduced modification relies on a complex-analytic technique and is applicable to a wide range of functions. Specifically, it is suitable for the class of entire functions of exponential type that satisfy a decay condition, as well as for the class of analytic functions defined on a horizontal strip. To validate the presented theoretical analysis, the paper includes rigorous numerical experiments.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"25 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00589-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The periodic nonuniform sampling series, involving periodic samples of both the function and its first r derivatives, was initially introduced by Nathan (Inform Control 22: 172–182, 1973). Since then, various authors have extended this sampling series in different contexts over the past decades. However, the application of the periodic nonuniform derivative sampling series in approximation theory has been limited due to its slow convergence. In this article, we introduce a modification to the periodic nonuniform sampling involving derivatives by incorporating a Gaussian multiplier. This modification results in a significantly improved convergence rate, which now follows an exponential order. This is a significant improvement compared to the original series, which had a convergence rate of \(O(N^{-1/p})\) where \(p>1\). The introduced modification relies on a complex-analytic technique and is applicable to a wide range of functions. Specifically, it is suitable for the class of entire functions of exponential type that satisfy a decay condition, as well as for the class of analytic functions defined on a horizontal strip. To validate the presented theoretical analysis, the paper includes rigorous numerical experiments.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.