{"title":"Fast algebraic multigrid for block-structured dense systems arising from nonlocal diffusion problems","authors":"Minghua Chen, Rongjun Cao, Stefano Serra-Capizzano","doi":"10.1007/s10092-024-00612-1","DOIUrl":null,"url":null,"abstract":"<p>Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large structured systems of equations. However, how to build/check restriction and prolongation operators in practical AMG methods for nonsymmetric <i>structured</i> systems is still an interesting open question in its full generality. The present paper deals with the block-structured dense and Toeplitz-like-plus-cross systems, including <i>nonsymmetric</i> indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffusion problems. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-cross systems, which are convenient and efficient when employing a fast AMG. We provide a detailed proof of the two-grid convergence of the method for the considered SPD structures. The numerical experiments are performed in order to verify the convergence with a computational cost of only <span>\\(\\mathscr {O}(N \\text{ log } N)\\)</span> arithmetic operations, by exploiting the fast Fourier transform, where <i>N</i> is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross linear systems solved by means of a fast AMG.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"31 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00612-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large structured systems of equations. However, how to build/check restriction and prolongation operators in practical AMG methods for nonsymmetric structured systems is still an interesting open question in its full generality. The present paper deals with the block-structured dense and Toeplitz-like-plus-cross systems, including nonsymmetric indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffusion problems. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-cross systems, which are convenient and efficient when employing a fast AMG. We provide a detailed proof of the two-grid convergence of the method for the considered SPD structures. The numerical experiments are performed in order to verify the convergence with a computational cost of only \(\mathscr {O}(N \text{ log } N)\) arithmetic operations, by exploiting the fast Fourier transform, where N is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross linear systems solved by means of a fast AMG.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.