A unified Bayesian approach to transcriptome-wide association study

Arnab Kumar Khan, Tanushree Haldar, Arunabha Majumdar
{"title":"A unified Bayesian approach to transcriptome-wide association study","authors":"Arnab Kumar Khan, Tanushree Haldar, Arunabha Majumdar","doi":"10.1101/2024.09.12.612639","DOIUrl":null,"url":null,"abstract":"Transcriptome-wide association study (TWAS) has shed light on molecular mechanisms by examining the roles of genes in complex disease etiology. TWAS facilitates gene expression mapping studies based on a reference panel of transcriptomic data to build a prediction model to identify expression quantitative loci (eQTLs) affecting gene expressions. These eQTLs leverage the construction of genetically regulated gene expression (GReX) in the GWAS data and a test between imputed GReX and the trait indicates gene-trait association. Such a two-step approach ignores the uncertainty of the predicted expression and can lead to reduced inference accuracy, e.g., inflated type-I error in TWAS. To circumvent a two-step approach, we develop a unified Bayesian method for TWAS, combining the two datasets simultaneously. We consider the horseshoe prior in the transcriptome data while modeling the relationship between the gene expression and local SNPs and the spike and slab prior while testing for an association between the GReX and the trait. We extend our approach to conducting a multi-ancestry TWAS, focusing on discovering genes that affect the trait in all ancestries. We have shown through simulation that our method gives better estimation accuracy for GReX effect size than other methods. In real data, applying our method to the GEUVADIS expression study and the GWAS data from the UK Biobank revealed several novel genes associated with the trait body mass index (BMI).","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptome-wide association study (TWAS) has shed light on molecular mechanisms by examining the roles of genes in complex disease etiology. TWAS facilitates gene expression mapping studies based on a reference panel of transcriptomic data to build a prediction model to identify expression quantitative loci (eQTLs) affecting gene expressions. These eQTLs leverage the construction of genetically regulated gene expression (GReX) in the GWAS data and a test between imputed GReX and the trait indicates gene-trait association. Such a two-step approach ignores the uncertainty of the predicted expression and can lead to reduced inference accuracy, e.g., inflated type-I error in TWAS. To circumvent a two-step approach, we develop a unified Bayesian method for TWAS, combining the two datasets simultaneously. We consider the horseshoe prior in the transcriptome data while modeling the relationship between the gene expression and local SNPs and the spike and slab prior while testing for an association between the GReX and the trait. We extend our approach to conducting a multi-ancestry TWAS, focusing on discovering genes that affect the trait in all ancestries. We have shown through simulation that our method gives better estimation accuracy for GReX effect size than other methods. In real data, applying our method to the GEUVADIS expression study and the GWAS data from the UK Biobank revealed several novel genes associated with the trait body mass index (BMI).
转录组关联研究的统一贝叶斯方法
全转录组关联研究(TWAS)通过研究基因在复杂疾病病因学中的作用,揭示了分子机制。TWAS 以转录组数据参考面板为基础,促进基因表达图谱研究,从而建立预测模型,确定影响基因表达的表达定量位点(eQTL)。这些 eQTLs 可利用 GWAS 数据中的基因调控基因表达(GReX)构建,并通过推算 GReX 与性状之间的检验表明基因与性状之间的关联。这种两步法忽略了预测表达的不确定性,可能导致推断准确性降低,例如 TWAS 中的 I 型误差增大。为了避免两步法,我们为 TWAS 开发了一种统一的贝叶斯方法,同时结合两个数据集。我们考虑了转录组数据中的马蹄先验,同时为基因表达和局部 SNP 之间的关系建模;还考虑了尖峰先验和板块先验,同时测试 GReX 和性状之间的关联。我们将我们的方法扩展到了多祖先 TWAS,重点是发现影响所有祖先性状的基因。我们通过模拟证明,与其他方法相比,我们的方法对 GReX 效应大小的估计精度更高。在真实数据中,将我们的方法应用于 GEUVADIS 表达研究和英国生物库的 GWAS 数据,发现了几个与体重指数(BMI)性状相关的新基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信