Small scales in inviscid limits of steady fluids

Yan Guo, Zhuolun Yang
{"title":"Small scales in inviscid limits of steady fluids","authors":"Yan Guo, Zhuolun Yang","doi":"arxiv-2409.09604","DOIUrl":null,"url":null,"abstract":"In this article, we study the 2D incompressible steady Navier-Stokes equation\nin a channel $(-L,0)\\times(-1,1)$ with the no-slip boundary condition on $\\{Y =\n\\pm 1\\}$, and consider the inviscid limit $\\varepsilon \\to 0$. In the special\ncase of Euler shear flow $(u_e(Y),0)$, we construct a steady Navier-Stokes\nsolution for $\\varepsilon \\ll1$, $$\\left\\{ \\begin{aligned} &u^\\varepsilon \\sim\nu_e + u_p + O(\\sqrt{\\varepsilon}),\\\\ &v^\\varepsilon \\sim h(Y)\n\\exp\\{Xu_e(Y)/\\varepsilon\\} + O(\\sqrt{\\varepsilon}), \\end{aligned}\\right. $$\nwhere $u_p$ represents the classical Prandtl layer profile, and $h(Y)$ is an\narbitrary smooth, compactly-supported function with small magnitude. While the\nclassical Prandtl boundary layer $u_p$ exhibits a small scale of order\n$\\sqrt{\\varepsilon}$ in $Y$ near $Y = \\pm 1$, the profile we construct reveals\nan $\\varepsilon$ small scale of $Xu_e(Y)$ in the vertical velocity component.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the 2D incompressible steady Navier-Stokes equation in a channel $(-L,0)\times(-1,1)$ with the no-slip boundary condition on $\{Y = \pm 1\}$, and consider the inviscid limit $\varepsilon \to 0$. In the special case of Euler shear flow $(u_e(Y),0)$, we construct a steady Navier-Stokes solution for $\varepsilon \ll1$, $$\left\{ \begin{aligned} &u^\varepsilon \sim u_e + u_p + O(\sqrt{\varepsilon}),\\ &v^\varepsilon \sim h(Y) \exp\{Xu_e(Y)/\varepsilon\} + O(\sqrt{\varepsilon}), \end{aligned}\right. $$ where $u_p$ represents the classical Prandtl layer profile, and $h(Y)$ is an arbitrary smooth, compactly-supported function with small magnitude. While the classical Prandtl boundary layer $u_p$ exhibits a small scale of order $\sqrt{\varepsilon}$ in $Y$ near $Y = \pm 1$, the profile we construct reveals an $\varepsilon$ small scale of $Xu_e(Y)$ in the vertical velocity component.
稳定流体不粘性极限中的小尺度
本文研究了在通道 $(-L,0)\times(-1,1)$ 上具有无滑动边界条件的二维不可压缩稳定纳维-斯托克斯方程,并考虑了无粘性极限 $\varepsilon \to 0$。在欧拉剪切流 $(u_e(Y),0)$ 的特殊情况下,我们为 $\varepsilon \ll1$ 构造了一个稳定的纳维-斯托克解、$$left\{ \begin{aligned} &u^\varepsilon \simu_e + u_p + O(\sqrt{\varepsilon}),\ &v^\varepsilon \sim h(Y)\exp\{Xu_e(Y)/\varepsilon\}+ O(\sqrt{\varepsilon}), \end{aligned}\right.$$其中$u_p$表示经典普朗特层剖面,$h(Y)$是一个任意的光滑、紧凑支持的小幅函数。经典的普朗特边界层$u_p$在$Y$附近的$Y=\pm 1$显示了一个小尺度(order$\sqrt{\varepsilon}$),而我们构建的剖面则在垂直速度分量中显示了一个小尺度(order$\varepsilon$)的$Xu_e(Y)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信