Existence of solutions for some systems of superdiffusive integro-differential equations in population dynamics depending on the natality and mortality rates

Vitali Vougalter
{"title":"Existence of solutions for some systems of superdiffusive integro-differential equations in population dynamics depending on the natality and mortality rates","authors":"Vitali Vougalter","doi":"arxiv-2409.09507","DOIUrl":null,"url":null,"abstract":"We prove the existence of stationary solutions for some systems of\nreaction-diffusion type equations with superdiffusion in the corresponding H^2\nspaces. Our method is based on the fixed point theorem when the elliptic\nproblems contain first order differential operators with and without the\nFredholm property, which may depend on the outcome of the competition between\nthe natality and the mortality rates contained in the equations of our systems.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of stationary solutions for some systems of reaction-diffusion type equations with superdiffusion in the corresponding H^2 spaces. Our method is based on the fixed point theorem when the elliptic problems contain first order differential operators with and without the Fredholm property, which may depend on the outcome of the competition between the natality and the mortality rates contained in the equations of our systems.
取决于出生率和死亡率的某些人口动力学超扩散积分微分方程系统解的存在性
我们证明了在相应的 H^2 空间中一些具有超扩散的反应扩散型方程系统的静止解的存在性。当椭圆问题包含具有或不具有弗雷德霍姆性质的一阶微分算子时,我们的方法基于定点定理,而弗雷德霍姆性质可能取决于我们的系统方程中所包含的出生率和死亡率之间的竞争结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信