On scattering for two-dimensional quintic Schrödinger equation under partial harmonic confinement

Zuyu Ma, Yilin Song, Ruixiao Zhang, Zehua Zhao, Jiqiang Zheng
{"title":"On scattering for two-dimensional quintic Schrödinger equation under partial harmonic confinement","authors":"Zuyu Ma, Yilin Song, Ruixiao Zhang, Zehua Zhao, Jiqiang Zheng","doi":"arxiv-2409.09789","DOIUrl":null,"url":null,"abstract":"In this article, we study the scattering theory for the two dimensional\ndefocusing quintic nonlinear Schr\\\"odinger equation(NLS) with partial harmonic\noscillator which is given by \\begin{align}\\label{NLS-abstract}\n\\begin{cases}\\tag{PHNLS}\ni\\partial_tu+(\\partial_{x_1}^2+\\partial_{x_2}^2)u-x_2^2u=|u|^4u,&(t,x_1,x_2)\\in\\mathbb{R}\\times\\mathbb{R}\\times\\mathbb{R},\\\\\nu(0,x_1,x_2)=u_0(x_1,x_2). \\end{cases} \\end{align} First, we establish the linear profile decomposition for the Schr\\\"odinger\noperator $e^{it(\\partial_{x_1}^2+\\partial_{x_2}^2-x_2^2)}$ by utilizing the\nclassical linear profile decomposition associated with the Schr\\\"odinger\nequation in $L^2(\\mathbb{R})$. Then, applying the normal form technique, we\napproximate the nonlinear profiles using solutions of the new-type quintic\ndispersive continuous resonant (DCR) system. This allows us to employ the\nconcentration-compactness/rigidity argument introduced by Kenig and Merle in\nour setting and prove scattering for equation (PHNLS) in the weighted Sobolev\nspace. The second part of this paper is dedicated to proving the scattering theory\nfor this mass-critical (DCR) system. Inspired by Dodson's seminal work [B.\nDodson, Amer. J. Math. 138 (2016), 531-569], we develop long-time Strichartz\nestimates associated with the spectral projection operator $\\Pi_n$, along with\nlow-frequency localized Morawetz estimates, to address the challenges posed by\nthe Galilean transformation and spatial translation.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the scattering theory for the two dimensional defocusing quintic nonlinear Schr\"odinger equation(NLS) with partial harmonic oscillator which is given by \begin{align}\label{NLS-abstract} \begin{cases}\tag{PHNLS} i\partial_tu+(\partial_{x_1}^2+\partial_{x_2}^2)u-x_2^2u=|u|^4u,&(t,x_1,x_2)\in\mathbb{R}\times\mathbb{R}\times\mathbb{R},\\ u(0,x_1,x_2)=u_0(x_1,x_2). \end{cases} \end{align} First, we establish the linear profile decomposition for the Schr\"odinger operator $e^{it(\partial_{x_1}^2+\partial_{x_2}^2-x_2^2)}$ by utilizing the classical linear profile decomposition associated with the Schr\"odinger equation in $L^2(\mathbb{R})$. Then, applying the normal form technique, we approximate the nonlinear profiles using solutions of the new-type quintic dispersive continuous resonant (DCR) system. This allows us to employ the concentration-compactness/rigidity argument introduced by Kenig and Merle in our setting and prove scattering for equation (PHNLS) in the weighted Sobolev space. The second part of this paper is dedicated to proving the scattering theory for this mass-critical (DCR) system. Inspired by Dodson's seminal work [B. Dodson, Amer. J. Math. 138 (2016), 531-569], we develop long-time Strichartz estimates associated with the spectral projection operator $\Pi_n$, along with low-frequency localized Morawetz estimates, to address the challenges posed by the Galilean transformation and spatial translation.
部分谐波约束下二维五元薛定谔方程的散射问题
本文我们研究了带有偏谐振子的二维去焦五次方非线性薛定谔方程(NLS)的散射理论,该方程的给定式为:begin{align}\label{NLS-abstract}\begin{cases}\tag{PHNLS}i\partial_tu+(\partial_{x_1}^2+\partial_{x_2}^2)u-x_2^2u=|u|^4u、&(t,x_1,x_2)\in\mathbb{R}\times\mathbb{R}\times\mathbb{R},\\u(0,x_1,x_2)=u_0(x_1,x_2).\end{cases}\end{align}首先,我们利用与$L^2(\mathbb{R})$中的薛定谔方程相关的经典线性轮廓分解,建立薛定谔算子$e^{it(\partial_{x_1}^2+\partial_{x_2}^2-x_2^2)}$的线性轮廓分解。然后,应用正则表达式技术,我们利用新型五次色散连续共振(DCR)系统的解来近似非线性剖面。这样,我们就可以在我们的设置中采用凯尼格和梅尔引入的集中-紧凑性/刚度论证,并证明加权索波列夫空间中方程(PHNLS)的散射。本文的第二部分致力于证明这个质量临界(DCR)系统的散射理论。受 Dodson 的开创性工作[B.Dodson, Amer. J. Math. 138 (2016), 531-569]的启发,我们开发了与谱投影算子 $\Pi_n$ 相关的长时 Strichartz 估计,以及低频局部 Morawetz 估计,以解决伽利略变换和空间平移带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信