Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition

Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva
{"title":"Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition","authors":"Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva","doi":"arxiv-2409.10065","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following nonlocal autonomous evolution\nequation in a bounded domain $\\Omega$ in $\\mathbb{R}^N$ \\[ \\partial_t u(x,t) =-\nh(x)u(x,t) + g \\Big(\\int_{\\Omega} J(x,y)u(y,t)dy \\Big) +f(x,u(x,t)) \\] where\n$h\\in W^{1,\\infty}(\\Omega)$, $g: \\mathbb{R} \\to \\mathbb{R}$ and\n$f:\\mathbb{R}^N\\times\\mathbb{R} \\to \\mathbb{R}$ are continuously differentiable\nfunction, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any\n$x,y\\in\\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we\nstudy the asymptotic dynamics of the initial value problem associated to this\nequation in a suitable phase spaces. More precisely, we prove the existence,\nand upper semicontinuity of compact global attractors with respect to kernel\n$J$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the following nonlocal autonomous evolution equation in a bounded domain $\Omega$ in $\mathbb{R}^N$ \[ \partial_t u(x,t) =- h(x)u(x,t) + g \Big(\int_{\Omega} J(x,y)u(y,t)dy \Big) +f(x,u(x,t)) \] where $h\in W^{1,\infty}(\Omega)$, $g: \mathbb{R} \to \mathbb{R}$ and $f:\mathbb{R}^N\times\mathbb{R} \to \mathbb{R}$ are continuously differentiable function, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any $x,y\in\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we study the asymptotic dynamics of the initial value problem associated to this equation in a suitable phase spaces. More precisely, we prove the existence, and upper semicontinuity of compact global attractors with respect to kernel $J$.
一类具有诺伊曼条件的非局部演化方程的上半连续性
在本文中,我们考虑在 $\mathbb{R}^N$ 中的有界域 $\Omega$ 中的以下非局部自主演化方程 \[ \partial_t u(x,t) =-h(x)u(x,t) + g \Big(\int_{\Omega} J(x,y)u(y,t)dy \Big) +f(x,u(x,t))\其中$h\in W^{1,\infty}(\Omega)$, $g:\和$f:\mathbb{R}^N次\mathbb{R}\to \mathbb{R}$都是连续可微分函数,并且$J$是一个对称核;也就是说,对于任意的$x,yin\mathbb{R}^N$ 来说,$J(x,y)=J(y,x)$。在关于 $f$ 和 $g$ 的其他适当假设下,我们研究了与此方程相关的初值问题在适当相空间中的渐近动力学。更确切地说,我们证明了关于核$J$的紧凑全局吸引子的存在性和上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信