Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva
{"title":"Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition","authors":"Flank D. M. Bezerra, Silvia Sastre-Gomez, Severino H. da Silva","doi":"arxiv-2409.10065","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following nonlocal autonomous evolution\nequation in a bounded domain $\\Omega$ in $\\mathbb{R}^N$ \\[ \\partial_t u(x,t) =-\nh(x)u(x,t) + g \\Big(\\int_{\\Omega} J(x,y)u(y,t)dy \\Big) +f(x,u(x,t)) \\] where\n$h\\in W^{1,\\infty}(\\Omega)$, $g: \\mathbb{R} \\to \\mathbb{R}$ and\n$f:\\mathbb{R}^N\\times\\mathbb{R} \\to \\mathbb{R}$ are continuously differentiable\nfunction, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any\n$x,y\\in\\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we\nstudy the asymptotic dynamics of the initial value problem associated to this\nequation in a suitable phase spaces. More precisely, we prove the existence,\nand upper semicontinuity of compact global attractors with respect to kernel\n$J$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider the following nonlocal autonomous evolution
equation in a bounded domain $\Omega$ in $\mathbb{R}^N$ \[ \partial_t u(x,t) =-
h(x)u(x,t) + g \Big(\int_{\Omega} J(x,y)u(y,t)dy \Big) +f(x,u(x,t)) \] where
$h\in W^{1,\infty}(\Omega)$, $g: \mathbb{R} \to \mathbb{R}$ and
$f:\mathbb{R}^N\times\mathbb{R} \to \mathbb{R}$ are continuously differentiable
function, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any
$x,y\in\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we
study the asymptotic dynamics of the initial value problem associated to this
equation in a suitable phase spaces. More precisely, we prove the existence,
and upper semicontinuity of compact global attractors with respect to kernel
$J$.