On the existence of solutions for a parabolic-elliptic chemotaxis model with flux limitation and logistic source

Silvia Sastre-Gomez, J. Ignacio Tello
{"title":"On the existence of solutions for a parabolic-elliptic chemotaxis model with flux limitation and logistic source","authors":"Silvia Sastre-Gomez, J. Ignacio Tello","doi":"arxiv-2409.10121","DOIUrl":null,"url":null,"abstract":"In this paper we study the existence of solutions of a parabolic-elliptic\nsystem of partial differential equations describing the behaviour of a\nbiological species $u$ and a chemical stimulus $v$ in a bounded and regular\ndomain $\\Omega$ of $\\mathbb{R}^N$. The equation for $u$ is a parabolic equation\nwith a nonlinear second order term of chemotaxis type with flux limitation as $\n-\\chi div (u |\\nabla \\psi|^{p-2} \\nabla v)$, for $p>1$. The chemical substance\ndistribution $v$ satisfies the elliptic equation $-\\Delta v+v=u$. The evolution\nof $u$ is also determined by a logistic type growth term $\\mu u(1-u)$. The\nsystem is studied under homogeneous Neumann boundary conditions. The main\nresult of the article is the existence of uniformly bounded solutions for\n$p<3/2$ and any $N\\ge 2$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the existence of solutions of a parabolic-elliptic system of partial differential equations describing the behaviour of a biological species $u$ and a chemical stimulus $v$ in a bounded and regular domain $\Omega$ of $\mathbb{R}^N$. The equation for $u$ is a parabolic equation with a nonlinear second order term of chemotaxis type with flux limitation as $ -\chi div (u |\nabla \psi|^{p-2} \nabla v)$, for $p>1$. The chemical substance distribution $v$ satisfies the elliptic equation $-\Delta v+v=u$. The evolution of $u$ is also determined by a logistic type growth term $\mu u(1-u)$. The system is studied under homogeneous Neumann boundary conditions. The main result of the article is the existence of uniformly bounded solutions for $p<3/2$ and any $N\ge 2$.
关于具有通量限制和逻辑源的抛物线-椭圆形趋化模型解的存在性
本文研究了描述生物物种$u$和化学刺激物$v$在$\mathbb{R}^N$的有界调节域$\Omega$中的行为的抛物-椭圆偏微分方程系统解的存在性。关于 $u$ 的方程是一个抛物线方程,其中包含一个化学趋向类型的非线性二阶项,通量限制为 $-\chi div (u |\nabla \psi|^{p-2} \nabla v)$,条件是 $p>1$。化学亚分布 $v$ 满足椭圆方程 $-\Delta v+v=u$。$u$ 的演化也由一个逻辑型增长项 $\mu u(1-u)$ 决定。该系统是在同质新曼边界条件下研究的。文章的主要结果是在 $p<3/2$ 和任意 $N\ge 2$ 时存在均匀有界解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信