Alignment with nonlinear velocity couplings: collision-avoidance and micro-to-macro mean-field limits

Young-Pil Choi, Michał Fabisiak, Jan Peszek
{"title":"Alignment with nonlinear velocity couplings: collision-avoidance and micro-to-macro mean-field limits","authors":"Young-Pil Choi, Michał Fabisiak, Jan Peszek","doi":"arxiv-2409.10501","DOIUrl":null,"url":null,"abstract":"We investigate the pressureless fractional Euler-alignment system with\nnonlinear velocity couplings, referred to as the $p$-Euler-alignment system.\nThis model features a nonlinear velocity alignment force, interpreted as a\ndensity-weighted fractional $p$-Laplacian when the singularity parameter\n$\\alpha$ exceeds the spatial dimension $d$. Our primary goal is to establish\nthe existence of solutions for strongly singular interactions ($\\alpha \\ge d$)\nand compactly supported initial conditions. We construct solutions as\nmean-field limits of empirical measures from a kinetic variant of the\n$p$-Euler-alignment system. Specifically, we show that a sequence of empirical\nmeasures converges to a finite Radon measure, whose local density and velocity\nsatisfy the $p$-Euler-alignment system. Our results are the first to prove the\nexistence of solutions to this system in multi-dimensional settings without\nsignificant initial data restrictions, covering both nonlinear ($p>2$) and\nlinear ($p=2$) cases. Additionally, we establish global existence, uniqueness,\nand collision avoidance for the corresponding particle ODE system under\nnon-collisional initial conditions, extending previous results for $1 \\le p \\le\n\\alpha + 2$. This analysis supports our mean-field limit argument and\ncontributes to understanding alignment models with singular communication.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the pressureless fractional Euler-alignment system with nonlinear velocity couplings, referred to as the $p$-Euler-alignment system. This model features a nonlinear velocity alignment force, interpreted as a density-weighted fractional $p$-Laplacian when the singularity parameter $\alpha$ exceeds the spatial dimension $d$. Our primary goal is to establish the existence of solutions for strongly singular interactions ($\alpha \ge d$) and compactly supported initial conditions. We construct solutions as mean-field limits of empirical measures from a kinetic variant of the $p$-Euler-alignment system. Specifically, we show that a sequence of empirical measures converges to a finite Radon measure, whose local density and velocity satisfy the $p$-Euler-alignment system. Our results are the first to prove the existence of solutions to this system in multi-dimensional settings without significant initial data restrictions, covering both nonlinear ($p>2$) and linear ($p=2$) cases. Additionally, we establish global existence, uniqueness, and collision avoidance for the corresponding particle ODE system under non-collisional initial conditions, extending previous results for $1 \le p \le \alpha + 2$. This analysis supports our mean-field limit argument and contributes to understanding alignment models with singular communication.
非线性速度耦合对准:避免碰撞和微观到宏观平均场极限
我们研究了具有非线性速度耦合的无压分数欧拉对齐系统,简称为$p$-欧拉对齐系统。该模型具有非线性速度对齐力,当奇异参数$\alpha$超过空间维度$d$时,该力被解释为密度加权分数$p$-拉普拉奇。我们的主要目标是为强奇异相互作用($\alpha \ge d$)和紧凑支撑的初始条件建立解的存在性。我们从$p$-Euler-对齐系统的动力学变体中构建了作为经验度量平均场极限的解。具体地说,我们证明了经验度量序列收敛于有限拉顿度量,其局部密度和速度满足$p$-欧拉对齐系统。我们的研究结果首次证明了该系统在无显著初始数据限制的多维环境下的解的存在性,涵盖了非线性($p>2$)和线性($p=2$)两种情况。此外,我们建立了相应粒子 ODE 系统在非碰撞初始条件下的全局存在性、唯一性和碰撞规避性,扩展了之前针对 $1 \le p \le\alpha + 2$ 的结果。这一分析支持了我们的均场极限论证,并有助于理解具有奇异通信的配准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信