Continuity of the linearized forward map of electrical impedance tomography from square-integrable perturbations to Hilbert-Schmidt operators

Joanna Bisch, Markus Hirvensalo, Nuutti Hyvönen
{"title":"Continuity of the linearized forward map of electrical impedance tomography from square-integrable perturbations to Hilbert-Schmidt operators","authors":"Joanna Bisch, Markus Hirvensalo, Nuutti Hyvönen","doi":"arxiv-2409.10671","DOIUrl":null,"url":null,"abstract":"This work considers the Fr\\'echet derivative of the idealized forward map of\ntwo-dimensional electrical impedance tomography, i.e., the linear operator that\nmaps a perturbation of the coefficient in the conductivity equation over a\nbounded two-dimensional domain to the linear approximation of the corresponding\nchange in the Neumann-to-Dirichlet boundary map. It is proved that the\nFr\\'echet derivative is bounded from the space of square-integrable\nconductivity perturbations to the space of Hilbert--Schmidt operators on the\nmean-free $L^2$ functions on the domain boundary, if the background\nconductivity coefficient is constant and the considered simply-connected domain\nhas a $C^{1,\\alpha}$ boundary. This result provides a theoretical framework for\nanalyzing linearization-based one-step reconstruction algorithms of electrical\nimpedance tomography in an infinite-dimensional setting.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work considers the Fr\'echet derivative of the idealized forward map of two-dimensional electrical impedance tomography, i.e., the linear operator that maps a perturbation of the coefficient in the conductivity equation over a bounded two-dimensional domain to the linear approximation of the corresponding change in the Neumann-to-Dirichlet boundary map. It is proved that the Fr\'echet derivative is bounded from the space of square-integrable conductivity perturbations to the space of Hilbert--Schmidt operators on the mean-free $L^2$ functions on the domain boundary, if the background conductivity coefficient is constant and the considered simply-connected domain has a $C^{1,\alpha}$ boundary. This result provides a theoretical framework for analyzing linearization-based one-step reconstruction algorithms of electrical impedance tomography in an infinite-dimensional setting.
从方整扰动到希尔伯特-施密特算子的电阻抗断层扫描线性化正向图的连续性
这项工作考虑了二维电阻抗断层成像理想化前向图的弗(echet)导数,即把有边二维域上电导方程中的系数扰动映射到诺伊曼到德里赫特边界图中相应变化的线性近似的线性算子。研究证明,如果背景电导系数是常数,并且所考虑的简单连接域具有 $C^{1,\alpha}$ 边界,那么从平方可积分电导扰动空间到域边界上无主题 $L^2$ 函数的希尔伯特-施密特算子空间的弗尔谢导数是有界的。这一结果为分析无限维环境下基于线性化的电阻抗断层扫描一步重建算法提供了一个理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信