{"title":"A note on the radially symmetry in the moving plane method","authors":"Shu-Yu Hsu","doi":"arxiv-2409.10834","DOIUrl":null,"url":null,"abstract":"Let $\\Omega\\subset\\mathbb{R}^n$, $n\\ge 2$, be a bounded connected $C^2$\ndomain. For any unit vector $\\nu\\in\\mathbb{R}^n$, let\n$T_{\\lambda}^{\\nu}=\\{x\\in\\mathbb{R}^n:x\\cdot\\nu=\\lambda\\}$,\n$\\Sigma_{\\lambda}^{\\nu}=\\{x\\in\\Omega:x\\cdot\\nu<\\lambda\\}$ and\n$x^{\\ast}=x-2(x\\cdot\\nu-\\lambda)\\nu$ be the reflection of a point\n$x\\in\\mathbb{R}^n$ about the plane $T_{\\lambda}^{\\nu}$. Let\n$\\widetilde{\\Sigma}_{\\lambda}^{\\nu}=\\{x\\in\\Omega:x^{\\ast}\\in\\Sigma_{\\lambda}^{\\nu}\\}$\nand $u\\in C^2(\\overline{\\Omega})$. Suppose for any unit vector\n$\\nu\\in\\mathbb{R}^n$, there exists a constant $\\lambda_{\\nu}\\in\\mathbb{R}$ such\nthat $\\Omega$ is symmetric about the plane $T_{\\lambda_{\\nu}}^{\\nu}$ and $u$ is\nsymmetric about the plane $T_{\\lambda_{\\nu}}^{\\nu}$ and satisfies\n(i)$\\,\\frac{\\partial u}{\\partial\\nu}(x)>0\\quad\\forall x\\in\n\\Sigma_{\\lambda_{\\nu}}^{\\nu}$ and (ii)$\\,\\frac{\\partial\nu}{\\partial\\nu}(x)<0\\quad\\forall x\\in\n\\widetilde{\\Sigma}_{\\lambda_{\\nu}}^{\\nu}$. We will give a simple proof that $u$\nis radially symmetric about some point $x_0\\in\\Omega$ and $\\Omega$ is a ball\nwith center at $x_0$. Similar result holds for the domain $\\mathbb{R}^n$ and\nfunction $u\\in C^2(\\mathbb{R}^n)$ satisfying similar monotonicity and symmetry\nconditions. We also extend this result under weaker hypothesis on the function\n$u$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\Omega\subset\mathbb{R}^n$, $n\ge 2$, be a bounded connected $C^2$
domain. For any unit vector $\nu\in\mathbb{R}^n$, let
$T_{\lambda}^{\nu}=\{x\in\mathbb{R}^n:x\cdot\nu=\lambda\}$,
$\Sigma_{\lambda}^{\nu}=\{x\in\Omega:x\cdot\nu<\lambda\}$ and
$x^{\ast}=x-2(x\cdot\nu-\lambda)\nu$ be the reflection of a point
$x\in\mathbb{R}^n$ about the plane $T_{\lambda}^{\nu}$. Let
$\widetilde{\Sigma}_{\lambda}^{\nu}=\{x\in\Omega:x^{\ast}\in\Sigma_{\lambda}^{\nu}\}$
and $u\in C^2(\overline{\Omega})$. Suppose for any unit vector
$\nu\in\mathbb{R}^n$, there exists a constant $\lambda_{\nu}\in\mathbb{R}$ such
that $\Omega$ is symmetric about the plane $T_{\lambda_{\nu}}^{\nu}$ and $u$ is
symmetric about the plane $T_{\lambda_{\nu}}^{\nu}$ and satisfies
(i)$\,\frac{\partial u}{\partial\nu}(x)>0\quad\forall x\in
\Sigma_{\lambda_{\nu}}^{\nu}$ and (ii)$\,\frac{\partial
u}{\partial\nu}(x)<0\quad\forall x\in
\widetilde{\Sigma}_{\lambda_{\nu}}^{\nu}$. We will give a simple proof that $u$
is radially symmetric about some point $x_0\in\Omega$ and $\Omega$ is a ball
with center at $x_0$. Similar result holds for the domain $\mathbb{R}^n$ and
function $u\in C^2(\mathbb{R}^n)$ satisfying similar monotonicity and symmetry
conditions. We also extend this result under weaker hypothesis on the function
$u$.