A note on the radially symmetry in the moving plane method

Shu-Yu Hsu
{"title":"A note on the radially symmetry in the moving plane method","authors":"Shu-Yu Hsu","doi":"arxiv-2409.10834","DOIUrl":null,"url":null,"abstract":"Let $\\Omega\\subset\\mathbb{R}^n$, $n\\ge 2$, be a bounded connected $C^2$\ndomain. For any unit vector $\\nu\\in\\mathbb{R}^n$, let\n$T_{\\lambda}^{\\nu}=\\{x\\in\\mathbb{R}^n:x\\cdot\\nu=\\lambda\\}$,\n$\\Sigma_{\\lambda}^{\\nu}=\\{x\\in\\Omega:x\\cdot\\nu<\\lambda\\}$ and\n$x^{\\ast}=x-2(x\\cdot\\nu-\\lambda)\\nu$ be the reflection of a point\n$x\\in\\mathbb{R}^n$ about the plane $T_{\\lambda}^{\\nu}$. Let\n$\\widetilde{\\Sigma}_{\\lambda}^{\\nu}=\\{x\\in\\Omega:x^{\\ast}\\in\\Sigma_{\\lambda}^{\\nu}\\}$\nand $u\\in C^2(\\overline{\\Omega})$. Suppose for any unit vector\n$\\nu\\in\\mathbb{R}^n$, there exists a constant $\\lambda_{\\nu}\\in\\mathbb{R}$ such\nthat $\\Omega$ is symmetric about the plane $T_{\\lambda_{\\nu}}^{\\nu}$ and $u$ is\nsymmetric about the plane $T_{\\lambda_{\\nu}}^{\\nu}$ and satisfies\n(i)$\\,\\frac{\\partial u}{\\partial\\nu}(x)>0\\quad\\forall x\\in\n\\Sigma_{\\lambda_{\\nu}}^{\\nu}$ and (ii)$\\,\\frac{\\partial\nu}{\\partial\\nu}(x)<0\\quad\\forall x\\in\n\\widetilde{\\Sigma}_{\\lambda_{\\nu}}^{\\nu}$. We will give a simple proof that $u$\nis radially symmetric about some point $x_0\\in\\Omega$ and $\\Omega$ is a ball\nwith center at $x_0$. Similar result holds for the domain $\\mathbb{R}^n$ and\nfunction $u\\in C^2(\\mathbb{R}^n)$ satisfying similar monotonicity and symmetry\nconditions. We also extend this result under weaker hypothesis on the function\n$u$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Omega\subset\mathbb{R}^n$, $n\ge 2$, be a bounded connected $C^2$ domain. For any unit vector $\nu\in\mathbb{R}^n$, let $T_{\lambda}^{\nu}=\{x\in\mathbb{R}^n:x\cdot\nu=\lambda\}$, $\Sigma_{\lambda}^{\nu}=\{x\in\Omega:x\cdot\nu<\lambda\}$ and $x^{\ast}=x-2(x\cdot\nu-\lambda)\nu$ be the reflection of a point $x\in\mathbb{R}^n$ about the plane $T_{\lambda}^{\nu}$. Let $\widetilde{\Sigma}_{\lambda}^{\nu}=\{x\in\Omega:x^{\ast}\in\Sigma_{\lambda}^{\nu}\}$ and $u\in C^2(\overline{\Omega})$. Suppose for any unit vector $\nu\in\mathbb{R}^n$, there exists a constant $\lambda_{\nu}\in\mathbb{R}$ such that $\Omega$ is symmetric about the plane $T_{\lambda_{\nu}}^{\nu}$ and $u$ is symmetric about the plane $T_{\lambda_{\nu}}^{\nu}$ and satisfies (i)$\,\frac{\partial u}{\partial\nu}(x)>0\quad\forall x\in \Sigma_{\lambda_{\nu}}^{\nu}$ and (ii)$\,\frac{\partial u}{\partial\nu}(x)<0\quad\forall x\in \widetilde{\Sigma}_{\lambda_{\nu}}^{\nu}$. We will give a simple proof that $u$ is radially symmetric about some point $x_0\in\Omega$ and $\Omega$ is a ball with center at $x_0$. Similar result holds for the domain $\mathbb{R}^n$ and function $u\in C^2(\mathbb{R}^n)$ satisfying similar monotonicity and symmetry conditions. We also extend this result under weaker hypothesis on the function $u$.
关于移动平面法径向对称性的说明
让 $Omega\subset\mathbb{R}^n$, $n\ge 2$, 是一个有界相连的 $C^2$ 域。对于任意单位向量 $\nu\inmathbb{R}^n$, let$T_{\lambda}^{\nu}=\{x\in\mathbb{R}^n:x\cdot\nu=\lambda\}$, $\Sigma_{\lambda}^{\nu}=\{x\in\Omega:x\cdot\nu0\quad\forall x\in\Sigma_{\lambda_{\nu}}^{\nu}$ and (ii)$\,\frac{\partialu}{\partial\nu}(x)<0\quad\forall x\in\widetilde{\Sigma}_{\lambda_{\nu}}^{\nu}$.我们将给出一个简单的证明,即 $u$ 关于某个点 $x_0\in\Omega$ 是径向对称的,并且 $\Omega$ 是一个以 $x_0$ 为中心的球。类似的结果也适用于域 $\mathbb{R}^n$ 和函数 $u\in C^2(\mathbb{R}^n)$ 满足类似的单调性和对称性条件。我们还在函数$u$的较弱假设下扩展了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信