Global Well-posedness for the Fourth-order Nonlinear Schrodinger Equation

Mingjuan Chen, Yufeng Lu, Yaqing Wang
{"title":"Global Well-posedness for the Fourth-order Nonlinear Schrodinger Equation","authors":"Mingjuan Chen, Yufeng Lu, Yaqing Wang","doi":"arxiv-2409.11002","DOIUrl":null,"url":null,"abstract":"The local and global well-posedness for the one dimensional fourth-order\nnonlinear Schr\\\"odinger equation are established in the modulation space\n$M^{s}_{2,q}$ for $s\\geq \\frac12$ and $2\\leq q <\\infty$. The local result is\nbased on the $U^p-V^p$ spaces and crucial bilinear estimates. The key\ningredient to obtain the global well-posedness is that we achieve a-priori\nestimates of the solution in modulation spaces by utilizing the power series\nexpansion of the perturbation determinant introduced by Killip-Visan-Zhang for\ncompletely integrable PDEs.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The local and global well-posedness for the one dimensional fourth-order nonlinear Schr\"odinger equation are established in the modulation space $M^{s}_{2,q}$ for $s\geq \frac12$ and $2\leq q <\infty$. The local result is based on the $U^p-V^p$ spaces and crucial bilinear estimates. The key ingredient to obtain the global well-posedness is that we achieve a-priori estimates of the solution in modulation spaces by utilizing the power series expansion of the perturbation determinant introduced by Killip-Visan-Zhang for completely integrable PDEs.
四阶非线性薛定谔方程的全局解析性
针对 $s\geq \frac12$ 和 $2\leq q <\infty$ 的调制空间$M^{s}_{2,q}$,建立了一维四阶非线性薛定谔方程的局部和全局好求解性。局部结果基于 $U^p-V^p$ 空间和关键的双线性估计。我们利用 Killip-Visan-Zhang 针对完全可整型 PDEs 引入的扰动行列式的幂级数展开,实现了对调制空间解的先验估计,这是获得全局可整型性的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信