Comparison principle for general nonlocal Hamilton-Jacobi equations with superlinear gradient

Adina Ciomaga, Tri Minh Le, Olivier Ley, Erwin Topp
{"title":"Comparison principle for general nonlocal Hamilton-Jacobi equations with superlinear gradient","authors":"Adina Ciomaga, Tri Minh Le, Olivier Ley, Erwin Topp","doi":"arxiv-2409.11124","DOIUrl":null,"url":null,"abstract":"We obtain the comparison principle for discontinuous viscosity sub- and\nsupersolutions of nonlocal Hamilton-Jacobi equations, with superlinear and\ncoercive gradient terms. The nonlocal terms are integro-differential operators\nin L\\'evy form, with general measures: $x$-dependent, possibly degenerate and\nwithout any restriction on the order. The measures must satisfy a combined\nWasserstein/Total Variation-continuity assumption, which is one of the weakest\nconditions used in the context of viscosity approach for this type of\nintegro-differential PDEs. The proof relies on a regularizing effect due to the\ngradient growth. We present several examples of applications to PDEs with\ndifferent types of nonlocal operators (measures with density, operators of\nvariable order, L\\'evy-It\\^o operators).","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain the comparison principle for discontinuous viscosity sub- and supersolutions of nonlocal Hamilton-Jacobi equations, with superlinear and coercive gradient terms. The nonlocal terms are integro-differential operators in L\'evy form, with general measures: $x$-dependent, possibly degenerate and without any restriction on the order. The measures must satisfy a combined Wasserstein/Total Variation-continuity assumption, which is one of the weakest conditions used in the context of viscosity approach for this type of integro-differential PDEs. The proof relies on a regularizing effect due to the gradient growth. We present several examples of applications to PDEs with different types of nonlocal operators (measures with density, operators of variable order, L\'evy-It\^o operators).
具有超线性梯度的一般非局部汉密尔顿-雅可比方程的比较原理
我们得到了带有超线性和胁迫梯度项的非局部汉密尔顿-雅可比方程的不连续粘性子和超子解的比较原理。非局部项是 L\'evy 形式的积分微分算子,具有一般度量:与 x$ 有关,可能是退化的,对阶没有任何限制。这些度量必须满足瓦瑟斯坦/总变异-连续性组合假设,这是在粘性方法背景下用于这类积分微分 PDE 的最弱条件之一。证明依赖于梯度增长所带来的正则效应。我们列举了几个应用于不同类型非局部算子(有密度的度量、可变阶算子、L\'evy-It\^o 算子)的 PDEs 的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信