Global well-posedness of the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system with Landau Potential

Nie Rui, Fang Li, Guo Zhenhua
{"title":"Global well-posedness of the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system with Landau Potential","authors":"Nie Rui, Fang Li, Guo Zhenhua","doi":"arxiv-2409.11775","DOIUrl":null,"url":null,"abstract":"A diffuse-interface model that describes the dynamics of nonhomogeneous\nincompressible two-phase viscous flows is investigated in a bounded smooth\ndomain in ${\\mathbb R}^3.$ The dynamics of the state variables is described by\nthe nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. We first\ngive a blow-up criterion of local strong solution to the initial-boundary-value\nproblem for the case of initial density away from zero. After establishing some\nkey a priori with the help of the Landau Potential, we obtain the global\nexistence and decay-in-time of strong solution, provided that the initial date\n$\\|\\nabla u_0\\|_{L^{2}(\\Omega)}+\\|\\nabla \\mu_0\\|_{L^{2}(\\Omega)}+\\rho_0$ is\nsuitably small.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A diffuse-interface model that describes the dynamics of nonhomogeneous incompressible two-phase viscous flows is investigated in a bounded smooth domain in ${\mathbb R}^3.$ The dynamics of the state variables is described by the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. We first give a blow-up criterion of local strong solution to the initial-boundary-value problem for the case of initial density away from zero. After establishing some key a priori with the help of the Landau Potential, we obtain the global existence and decay-in-time of strong solution, provided that the initial date $\|\nabla u_0\|_{L^{2}(\Omega)}+\|\nabla \mu_0\|_{L^{2}(\Omega)}+\rho_0$ is suitably small.
具有兰道势能的非均质不可压缩纳维-斯托克斯-卡恩-希利亚德系统的全局好求解性
在${\mathbb R}^3 的有界光滑域中研究了描述非均质不可压缩两相粘性流动力学的扩散-界面模型。我们首先给出了在初始密度远离零的情况下初始-边界-求值问题的局部强解的炸毁判据。在借助朗道势建立了一些先验关键之后,我们得到了强解的全局存在性和时间衰减性,前提是初始date$\|\nabla u_0\|_{L^{2}(\Omega)}+\|\nabla \mu_0\|_{L^{2}(\Omega)}+\rho_0$ issueitably small。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信