Nonlinear relations of viscous stress and strain rate in nonlinear Viscoelasticity

Lennart Machill
{"title":"Nonlinear relations of viscous stress and strain rate in nonlinear Viscoelasticity","authors":"Lennart Machill","doi":"arxiv-2409.11882","DOIUrl":null,"url":null,"abstract":"We consider a Kelvin-Voigt model for viscoelastic second-grade materials,\nwhere the elastic and the viscous stress tensor both satisfy frame\nindifference. Using a rigidity estimate by [Ciarlet-Mardare '15], existence of\nweak solutions is shown by means of a frame-indifferent time-discretization\nscheme. Further, the result includes viscous stress tensors which can be\ncalculated by nonquadratic polynomial densities. Afterwards, we investigate the\nlong-time behavior of solutions in the case of small external loading and\ninitial data. Our main tool is the abstract theory of metric gradient flows.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Kelvin-Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame indifference. Using a rigidity estimate by [Ciarlet-Mardare '15], existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows.
非线性粘弹性中粘应力和应变率的非线性关系
我们考虑了粘弹性二级材料的开尔文-沃伊特模型,其中弹性和粘性应力张量均满足框架差分。利用[Ciarlet-Mardare'15]的刚度估计,通过帧差时间离散化方案证明了弱解的存在。此外,该结果还包括粘性应力张量,可通过非二次多项式密度计算。随后,我们研究了小外部载荷和初始数据情况下的解的长时行为。我们的主要工具是度量梯度流的抽象理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信