SPECTER: An Instrument Concept for CMB Spectral Distortion Measurements with Enhanced Sensitivity

Alina Sabyr, Carlos Sierra, J. Colin Hill, Jeffrey J. McMahon
{"title":"SPECTER: An Instrument Concept for CMB Spectral Distortion Measurements with Enhanced Sensitivity","authors":"Alina Sabyr, Carlos Sierra, J. Colin Hill, Jeffrey J. McMahon","doi":"arxiv-2409.12188","DOIUrl":null,"url":null,"abstract":"Deviations of the cosmic microwave background (CMB) energy spectrum from a\nperfect blackbody uniquely probe a wide range of physics, ranging from\nfundamental physics in the primordial Universe ($\\mu$-distortion) to late-time\nbaryonic feedback processes (y-distortion). While the y-distortion can be\ndetected with a moderate increase in sensitivity over that of COBE/FIRAS, the\n$\\Lambda$CDM-predicted $\\mu$-distortion is roughly two orders of magnitude\nsmaller and requires substantial improvements, with foregrounds presenting a\nserious obstacle. Within the standard model, the dominant contribution to $\\mu$\narises from energy injected via Silk damping, yielding sensitivity to the\nprimordial power spectrum at wavenumbers $k \\approx 1-10^{4}$ Mpc$^{-1}$. Here,\nwe present a new instrument concept, SPECTER, with the goal of robustly\ndetecting $\\mu$. The instrument technology is similar to that of LiteBIRD, but\nwith an absolute temperature calibration system. Using a Fisher approach, we\noptimize the instrument's configuration to target $\\mu$ while robustly\nmarginalizing over foreground contaminants. Unlike\nFourier-transform-spectrometer-based designs, the specific bands and their\nindividual sensitivities can be independently set in this instrument, allowing\nsignificant flexibility. We forecast SPECTER to observe the\n$\\Lambda$CDM-predicted $\\mu$-distortion at $\\approx 5\\sigma$ (10$\\sigma$)\nassuming an observation time of 1 (4) year(s) (corresponding to mission\nduration of 2 (8) years), after foreground marginalization. Our optimized\nconfiguration includes 16 bands spanning 1-2000 GHz with degree-scale angular\nresolution at 150 GHz and 1046 total detectors. SPECTER will additionally\nmeasure the y-distortion at sub-percent precision and its relativistic\ncorrection at percent-level precision, yielding tight constraints on the total\nthermal energy and mean temperature of ionized gas.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deviations of the cosmic microwave background (CMB) energy spectrum from a perfect blackbody uniquely probe a wide range of physics, ranging from fundamental physics in the primordial Universe ($\mu$-distortion) to late-time baryonic feedback processes (y-distortion). While the y-distortion can be detected with a moderate increase in sensitivity over that of COBE/FIRAS, the $\Lambda$CDM-predicted $\mu$-distortion is roughly two orders of magnitude smaller and requires substantial improvements, with foregrounds presenting a serious obstacle. Within the standard model, the dominant contribution to $\mu$ arises from energy injected via Silk damping, yielding sensitivity to the primordial power spectrum at wavenumbers $k \approx 1-10^{4}$ Mpc$^{-1}$. Here, we present a new instrument concept, SPECTER, with the goal of robustly detecting $\mu$. The instrument technology is similar to that of LiteBIRD, but with an absolute temperature calibration system. Using a Fisher approach, we optimize the instrument's configuration to target $\mu$ while robustly marginalizing over foreground contaminants. Unlike Fourier-transform-spectrometer-based designs, the specific bands and their individual sensitivities can be independently set in this instrument, allowing significant flexibility. We forecast SPECTER to observe the $\Lambda$CDM-predicted $\mu$-distortion at $\approx 5\sigma$ (10$\sigma$) assuming an observation time of 1 (4) year(s) (corresponding to mission duration of 2 (8) years), after foreground marginalization. Our optimized configuration includes 16 bands spanning 1-2000 GHz with degree-scale angular resolution at 150 GHz and 1046 total detectors. SPECTER will additionally measure the y-distortion at sub-percent precision and its relativistic correction at percent-level precision, yielding tight constraints on the total thermal energy and mean temperature of ionized gas.
SPECTER:灵敏度更高的 CMB 光谱畸变测量仪器概念
宇宙微波背景(CMB)能谱与完美黑体之间的偏差独特地探测了从原始宇宙中的基础物理学($\mu$-distortion)到晚期重子反馈过程(y-distortion)等广泛的物理学。与COBE/FIRAS的灵敏度相比,y-失真只需适度提高灵敏度就能探测到,而$\Lambda$CDM预测的$\mu$-失真大约小两个数量级,需要大幅度改进,前景是一个严重的障碍。在标准模型中,对$\mu$的主要贡献来自于通过丝绸阻尼注入的能量,产生了对波数$k (约1-10^{4}$ Mpc$^{-1}$ 的原始功率谱的敏感性。在这里,我们提出了一个新的仪器概念--SPECTER,其目标是强力探测$\mu$。该仪器的技术与 LiteBIRD 类似,但采用了绝对温度校准系统。利用费舍尔方法,我们优化了仪器的配置,以瞄准$\mu$,同时稳健地边缘化前景污染物。与基于傅立叶变换分光计的设计不同,该仪器的特定波段及其单独灵敏度可以独立设置,因而具有很大的灵活性。假设观测时间为1(4)年(相当于任务持续时间2(8)年),在前景边缘化之后,我们预测SPECTER可以观测到CDM预测的$\mu$-distortion在$\approx 5\sigma$(10$\sigma$)。我们的优化配置包括 16 个波段,跨度为 1-2000 GHz,角分辨率为 150 GHz,探测器总数为 1046 个。此外,SPECTER 还将以亚百分之一的精度测量 Y 扭曲,并以百分之一的精度测量其相对论校正,从而对电离气体的总热能和平均温度产生严格的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信