On the Novikov problem for superposition of periodic potentials

A. Ya. Maltsev
{"title":"On the Novikov problem for superposition of periodic potentials","authors":"A. Ya. Maltsev","doi":"arxiv-2409.09759","DOIUrl":null,"url":null,"abstract":"We consider the Novikov problem, namely, the problem of describing the level\nlines of quasiperiodic functions on the plane, for a special class of\npotentials that have important applications in the physics of two-dimensional\nsystems. Potentials of this type are given by a superposition of periodic\npotentials and represent quasiperiodic functions on a plane with four\nquasiperiods. Here we study an important special case when the periodic\npotentials have the same rotational symmetry. In the generic case, their\nsuperpositions have ``chaotic'' open level lines, which brings them close to\nrandom potentials. At the same time, the Novikov problem has interesting\nfeatures also for ``magic'' rotation angles, which lead to the emergence of\nperiodic superpositions.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Novikov problem, namely, the problem of describing the level lines of quasiperiodic functions on the plane, for a special class of potentials that have important applications in the physics of two-dimensional systems. Potentials of this type are given by a superposition of periodic potentials and represent quasiperiodic functions on a plane with four quasiperiods. Here we study an important special case when the periodic potentials have the same rotational symmetry. In the generic case, their superpositions have ``chaotic'' open level lines, which brings them close to random potentials. At the same time, the Novikov problem has interesting features also for ``magic'' rotation angles, which lead to the emergence of periodic superpositions.
关于周期势叠加的诺维科夫问题
我们考虑的是诺维科夫问题,即描述平面上准周期函数水平线的问题,适用于在二维系统物理学中具有重要应用价值的一类特殊势。这类势由周期势的叠加给出,代表平面上具有四个周期的准周期函数。在此,我们研究了当周期势具有相同旋转对称性时的一个重要特例。在一般情况下,它们的超势具有 "混乱的 "开放水平线,这使它们接近于无序势。同时,诺维科夫问题对于 "神奇的 "旋转角也具有有趣的特征,这导致了周期超势的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信