Macroscopic thermalization by unitary time-evolution in the weakly perturbed two-dimensional Ising model --- An application of the Roos-Teufel-Tumulka-Vogel theorem

Hal Tasaki
{"title":"Macroscopic thermalization by unitary time-evolution in the weakly perturbed two-dimensional Ising model --- An application of the Roos-Teufel-Tumulka-Vogel theorem","authors":"Hal Tasaki","doi":"arxiv-2409.09395","DOIUrl":null,"url":null,"abstract":"To demonstrate the implication of the recent important theorem by Roos,\nTeufel, Tumulka, and Vogel [1] in a simple but nontrivial example, we study\nthermalization in the two-dimensional Ising model in the low-temperature phase.\nWe consider the Hamiltonian $\\hat{H}_L$ of the standard ferromagnetic Ising\nmodel with the plus boundary conditions and perturb it with a small\nself-adjoint operator $\\lambda\\hat{V}$ drawn randomly from the space of\nself-adjoint operators on the whole Hilbert space. Suppose that the system is\ninitially in a classical spin configuration with a specified energy that may be\nvery far from thermal equilibrium. It is proved that, for most choices of the\nrandom perturbation, the unitary time evolution\n$e^{-i(\\hat{H}_L+\\lambda\\hat{V})t}$ brings the initial state into thermal\nequilibrium after a sufficiently long and typical time $t$, in the sense that\nthe measurement result of the magnetization density at time $t$ almost\ncertainly coincides with the spontaneous magnetization expected in the\ncorresponding equilibrium.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"5 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To demonstrate the implication of the recent important theorem by Roos, Teufel, Tumulka, and Vogel [1] in a simple but nontrivial example, we study thermalization in the two-dimensional Ising model in the low-temperature phase. We consider the Hamiltonian $\hat{H}_L$ of the standard ferromagnetic Ising model with the plus boundary conditions and perturb it with a small self-adjoint operator $\lambda\hat{V}$ drawn randomly from the space of self-adjoint operators on the whole Hilbert space. Suppose that the system is initially in a classical spin configuration with a specified energy that may be very far from thermal equilibrium. It is proved that, for most choices of the random perturbation, the unitary time evolution $e^{-i(\hat{H}_L+\lambda\hat{V})t}$ brings the initial state into thermal equilibrium after a sufficiently long and typical time $t$, in the sense that the measurement result of the magnetization density at time $t$ almost certainly coincides with the spontaneous magnetization expected in the corresponding equilibrium.
弱扰动二维伊辛模型中单位时间演化的宏观热化--罗思-特乌费尔-图穆尔卡-沃格尔定理的应用
为了在一个简单但非微不足道的例子中证明 Roos、Teufel、Tumulka 和 Vogel [1] 最近提出的重要定理的含义,我们研究了二维伊辛模型在低温阶段的热化问题。我们考虑了标准铁磁伊辛模型的哈密顿方程 $\hat{H}_L$ 与加边界条件,并用从整个希尔伯特空间的自偶函数空间中随机抽取的小自偶函数 $\lambda\hat{V}$ 对其进行扰动。假设系统最初处于具有指定能量的经典自旋构型中,可能离热平衡非常远。研究证明,对于大多数随机扰动的选择,单元时间演化$e^{-i(\hat{H}_L+\lambda/hat{V})t}$会在足够长的典型时间$t$之后将初始状态带入热平衡,即在时间$t$下磁化密度的测量结果几乎肯定与相应平衡下的自发磁化相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信