Quantized Kepler-Coulomb dynamical models on two-dimensional constant curvature spaces

Agnieszka Martens
{"title":"Quantized Kepler-Coulomb dynamical models on two-dimensional constant curvature spaces","authors":"Agnieszka Martens","doi":"arxiv-2409.09776","DOIUrl":null,"url":null,"abstract":"The paper is continuation of [6] where we have discussed some classical and\nquantization problems of rigid bodies of infinitesimal size moving in\nRiemannian spaces. Strictly speaking, we have considered oscillatory dynamical\nmodels on sphere and pseudosphere. Here we concentrate on Kepler-Coulomb\npotential models. We have used formulated in [6] the two-dimensional situation\non the quantum level. The Sommerfeld polynomial method is used to perform the\nquantization of such problems. The quantization of two-dimensional problems may\nhave something to do with the dynamics of graphens, fullerens and nanotubes.\nThis problem is also nearly related to the so-called restricted problems of\nrigid body dynamic [1], [8].","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is continuation of [6] where we have discussed some classical and quantization problems of rigid bodies of infinitesimal size moving in Riemannian spaces. Strictly speaking, we have considered oscillatory dynamical models on sphere and pseudosphere. Here we concentrate on Kepler-Coulomb potential models. We have used formulated in [6] the two-dimensional situation on the quantum level. The Sommerfeld polynomial method is used to perform the quantization of such problems. The quantization of two-dimensional problems may have something to do with the dynamics of graphens, fullerens and nanotubes. This problem is also nearly related to the so-called restricted problems of rigid body dynamic [1], [8].
二维恒曲率空间上的量化开普勒-库仑动力学模型
本文是[6]的继续,在[6]中,我们讨论了在黎曼空间中运动的无限小刚体的一些经典问题和量化问题。严格地说,我们考虑了球面和伪球上的振荡动力学模型。这里我们集中讨论开普勒-库仑势模型。我们在[6]中使用了量子层面的二维情况。索默费尔德多项式方法被用来对这类问题进行量子化。二维问题的量子化可能与石墨、富勒烯和纳米管的动力学有关,这个问题也几乎与所谓的刚性体动力学受限问题有关[1],[8]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信