Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking

G. Akemann, F. Balducci, A. Chenu, P. Päßler, F. Roccati, R. Shir
{"title":"Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking","authors":"G. Akemann, F. Balducci, A. Chenu, P. Päßler, F. Roccati, R. Shir","doi":"arxiv-2409.10625","DOIUrl":null,"url":null,"abstract":"Open quantum systems have complex energy eigenvalues which are expected to\nfollow non-Hermitian random matrix statistics when chaotic, or 2-dimensional\n(2d) Poisson statistics when integrable. We investigate the spectral properties\nof a many-body quantum spin chain, the Hermitian XXZ Heisenberg model with\nimaginary disorder. Its rich complex eigenvalue statistics is found to\nseparately break both Hermiticity and integrability at different scales of the\ndisorder strength. With no disorder, the system is integrable and Hermitian,\nwith spectral statistics corresponding to 1d Poisson. At very small disorder,\nwe find a transition from 1d Poisson statistics to an effective $D$-dimensional\nPoisson point process, showing Hermiticity breaking. At intermediate disorder\nwe find integrability breaking, and the statistics agrees with that of\nnon-Hermitian complex symmetric random matrices in class AI$^\\dag$. For large\ndisorder, we recover the expected 2d Poisson statistics. Our analysis uses\nnumerically generated nearest and next-to-nearest neighbour spacing\ndistributions of an effective 2d Coulomb gas description at inverse temperature\n$\\beta$, fitting them to the spin chain data. We confirm such an effective\ndescription of random matrices in class AI$^\\dag$ and AII$^\\dag$ up to\nnext-to-nearest neighbour spacings.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open quantum systems have complex energy eigenvalues which are expected to follow non-Hermitian random matrix statistics when chaotic, or 2-dimensional (2d) Poisson statistics when integrable. We investigate the spectral properties of a many-body quantum spin chain, the Hermitian XXZ Heisenberg model with imaginary disorder. Its rich complex eigenvalue statistics is found to separately break both Hermiticity and integrability at different scales of the disorder strength. With no disorder, the system is integrable and Hermitian, with spectral statistics corresponding to 1d Poisson. At very small disorder, we find a transition from 1d Poisson statistics to an effective $D$-dimensional Poisson point process, showing Hermiticity breaking. At intermediate disorder we find integrability breaking, and the statistics agrees with that of non-Hermitian complex symmetric random matrices in class AI$^\dag$. For large disorder, we recover the expected 2d Poisson statistics. Our analysis uses numerically generated nearest and next-to-nearest neighbour spacing distributions of an effective 2d Coulomb gas description at inverse temperature $\beta$, fitting them to the spin chain data. We confirm such an effective description of random matrices in class AI$^\dag$ and AII$^\dag$ up to next-to-nearest neighbour spacings.
复特征值统计中的两种转变:隐含性和可整性打破
开放量子系统具有复杂的能量特征值,这些特征值在混沌时遵循非赫米提随机矩阵统计,在可积分时遵循二维(2d)泊松统计。我们研究了多体量子自旋链--具有虚无序的赫米蒂 XXZ 海森堡模型--的谱特性。我们发现,其丰富的复特征值统计在无序强度的不同尺度上分别打破了赫米蒂性和可整性。在没有无序的情况下,系统是可积分的、赫米特的,其频谱统计与 1d 泊松对应。在非常小的无序状态下,我们发现从 1d 泊松统计量过渡到有效的 $D$ 维泊松点过程,显示了赫米特性的破坏。在中等无序度时,我们发现了可整性破坏,统计量与类 AI$^\dag$ 中的非赫米提复数对称随机矩阵的统计量一致。对于大无序,我们恢复了预期的二维泊松统计。我们的分析使用了数值生成的反温度$^\beta$下有效二维库仑气体描述的最近邻和近邻空间分布,并将它们与自旋链数据进行了拟合。我们证实了这种对 AI$^\dag$ 和 AII$^\dag$ 类随机矩阵的最近邻空间的有效描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信