Terminating Poincare asymptotic expansion of the Hankel transform of entire exponential type functions

Nathalie Liezel R. Rojas, Eric A. Galapon
{"title":"Terminating Poincare asymptotic expansion of the Hankel transform of entire exponential type functions","authors":"Nathalie Liezel R. Rojas, Eric A. Galapon","doi":"arxiv-2409.10948","DOIUrl":null,"url":null,"abstract":"We perform an asymptotic evaluation of the Hankel transform,\n$\\int_0^{\\infty}J_{\\nu}(\\lambda x) f(x)\\mathrm{d}x$, for arbitrarily large\n$\\lambda$ of an entire exponential type function, $f(x)$, of type $\\tau$ by\nshifting the contour of integration in the complex plane. Under the situation\nthat $J_{\\nu}(\\lambda x)f(x)$ has an odd parity with respect to $x$ and the\ncondition that the asymptotic parameter $\\lambda$ is greater than the type\n$\\tau$, we obtain an exactly terminating Poincar{\\'e} expansion without any\ntrailing subdominant exponential terms. That is the Hankel transform evaluates\nexactly into a polynomial in inverse $\\lambda$ as $\\lambda$ approaches\ninfinity.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We perform an asymptotic evaluation of the Hankel transform, $\int_0^{\infty}J_{\nu}(\lambda x) f(x)\mathrm{d}x$, for arbitrarily large $\lambda$ of an entire exponential type function, $f(x)$, of type $\tau$ by shifting the contour of integration in the complex plane. Under the situation that $J_{\nu}(\lambda x)f(x)$ has an odd parity with respect to $x$ and the condition that the asymptotic parameter $\lambda$ is greater than the type $\tau$, we obtain an exactly terminating Poincar{\'e} expansion without any trailing subdominant exponential terms. That is the Hankel transform evaluates exactly into a polynomial in inverse $\lambda$ as $\lambda$ approaches infinity.
整个指数型函数的汉克尔变换的终结泊恩卡雷渐近展开
我们通过在复平面上移动积分轮廓,对任意大$tau$类型的整个指数函数$f(x)$的汉克尔变换,$int_0^{\infty}J_{\nu}(\lambda x) f(x)\mathrm{d}x$进行渐近评估。在$J_{\nu}(\lambda x)f(x)$ 相对于$x$为奇偶性以及渐近参数$\lambda$大于类型$\tau$的条件下,我们得到了一个精确终止的Poincar{'e}展开,没有任何尾随的次主导指数项。也就是说,当 $\lambda$ 接近无穷大时,汉克尔变换会精确地评估为反 $\lambda$ 的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信