Geometric Formula for 2d Ising Zeros: Examples & Numerics

Iñaki Garay, Etera R. Livine
{"title":"Geometric Formula for 2d Ising Zeros: Examples & Numerics","authors":"Iñaki Garay, Etera R. Livine","doi":"arxiv-2409.11109","DOIUrl":null,"url":null,"abstract":"A geometric formula for the zeros of the partition function of the\ninhomogeneous 2d Ising model was recently proposed in terms of the angles of 2d\ntriangulations embedded in the flat 3d space. Here we proceed to an analytical\ncheck of this formula on the cubic graph, dual to a double pyramid, and provide\na thorough numerical check by generating random 2d planar triangulations. Our\nmethod is to generate Delaunay triangulations of the 2-sphere then performing\nrandom local rescalings. For every 2d triangulations, we compute the\ncorresponding Ising couplings from the triangle angles and the dihedral angles,\nand check directly that the Ising partition function vanishes for these\ncouplings (and grows in modulus in their neighborhood). In particular, we lift\nan ambiguity of the original formula on the sign of the dihedral angles and\nestablish a convention in terms of convexity/concavity. Finally, we extend our\nnumerical analysis to 2d toroidal triangulations and show that the geometric\nformula does not work and will need to be generalized, as originally expected,\nin order to accommodate for non-trivial topologies.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A geometric formula for the zeros of the partition function of the inhomogeneous 2d Ising model was recently proposed in terms of the angles of 2d triangulations embedded in the flat 3d space. Here we proceed to an analytical check of this formula on the cubic graph, dual to a double pyramid, and provide a thorough numerical check by generating random 2d planar triangulations. Our method is to generate Delaunay triangulations of the 2-sphere then performing random local rescalings. For every 2d triangulations, we compute the corresponding Ising couplings from the triangle angles and the dihedral angles, and check directly that the Ising partition function vanishes for these couplings (and grows in modulus in their neighborhood). In particular, we lift an ambiguity of the original formula on the sign of the dihedral angles and establish a convention in terms of convexity/concavity. Finally, we extend our numerical analysis to 2d toroidal triangulations and show that the geometric formula does not work and will need to be generalized, as originally expected, in order to accommodate for non-trivial topologies.
2d Ising 零点几何公式:示例与数值
最近,有人根据嵌入平面三维空间的二维三角形的角度,提出了同质二维伊辛模型分区函数零点的几何公式。在此,我们着手在立方图(双金字塔的对偶图)上对该公式进行分析检验,并通过随机生成 2d 平面三角剖分进行全面的数值检验。我们的方法是生成 2 球面的 Delaunay 三角剖分,然后进行随机局部重缩放。对于每个 2d 三角形,我们根据三角形角度和二面角计算相应的伊辛耦合,并直接检验这些耦合的伊辛分割函数是否消失(并且在其邻域内模量增长)。特别是,我们消除了原始公式中关于二面角符号的歧义,并建立了凸性/凹性的约定。最后,我们将数值分析扩展到二维环状三角形,并证明几何公式并不适用,需要按照最初的预期加以推广,以适应非三维拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信