Representation theory of Gaussian unitary transformations for bosonic and fermionic systems

Tommaso Guaita, Lucas Hackl, Thomas Quella
{"title":"Representation theory of Gaussian unitary transformations for bosonic and fermionic systems","authors":"Tommaso Guaita, Lucas Hackl, Thomas Quella","doi":"arxiv-2409.11628","DOIUrl":null,"url":null,"abstract":"Gaussian unitary transformations are generated by quadratic Hamiltonians,\ni.e., Hamiltonians containing quadratic terms in creations and annihilation\noperators, and are heavily used in many areas of quantum physics, ranging from\nquantum optics and condensed matter theory to quantum information and quantum\nfield theory in curved spacetime. They are known to form a representation of\nthe metaplectic and spin group for bosons and fermions, respectively. These\ngroups are the double covers of the symplectic and special orthogonal group,\nrespectively, and our goal is to analyze the behavior of the sign ambiguity\nthat one needs to deal with when moving between these groups and their double\ncover. We relate this sign ambiguity to expectation values of the form $\\langle\n0|\\exp{(-i\\hat{H})}|0\\rangle$, where $|0\\rangle$ is a Gaussian state and\n$\\hat{H}$ an arbitrary quadratic Hamiltonian. We provide closed formulas for\n$\\langle 0|\\exp{(-i\\hat{H})}|0\\rangle$ and show how we can efficiently describe\ngroup multiplications in the double cover without the need of going to a\nfaithful representation on an exponentially large or even infinite-dimensional\nspace. Our construction relies on an explicit parametrization of these two\ngroups (metaplectic, spin) in terms of symplectic and orthogonal group elements\ntogether with a twisted U(1) group.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian unitary transformations are generated by quadratic Hamiltonians, i.e., Hamiltonians containing quadratic terms in creations and annihilation operators, and are heavily used in many areas of quantum physics, ranging from quantum optics and condensed matter theory to quantum information and quantum field theory in curved spacetime. They are known to form a representation of the metaplectic and spin group for bosons and fermions, respectively. These groups are the double covers of the symplectic and special orthogonal group, respectively, and our goal is to analyze the behavior of the sign ambiguity that one needs to deal with when moving between these groups and their double cover. We relate this sign ambiguity to expectation values of the form $\langle 0|\exp{(-i\hat{H})}|0\rangle$, where $|0\rangle$ is a Gaussian state and $\hat{H}$ an arbitrary quadratic Hamiltonian. We provide closed formulas for $\langle 0|\exp{(-i\hat{H})}|0\rangle$ and show how we can efficiently describe group multiplications in the double cover without the need of going to a faithful representation on an exponentially large or even infinite-dimensional space. Our construction relies on an explicit parametrization of these two groups (metaplectic, spin) in terms of symplectic and orthogonal group elements together with a twisted U(1) group.
玻色子和费米子系统的高斯单元变换表征理论
高斯单元变换是由二次哈密顿产生的,即在创造和湮灭算子中包含二次项的哈密顿,在量子物理的许多领域都有大量应用,从量子光学和凝聚态理论到弯曲时空中的量子信息和量子场理论。众所周知,它们分别构成玻色子和费米子的元胞群和自旋群的表示。这些群分别是交映群和特殊正交群的双盖,我们的目标是分析在这些群和它们的双盖之间移动时需要处理的符号模糊性的行为。我们将这种符号模糊性与$\langle0|\exp{(-i\hat{H})}|0\rangle$形式的期望值联系起来,其中$|0\rangle$是高斯状态,$\hat{H}$是任意二次哈密顿。我们为 $\langle 0|\exp{(-i\hat{H})}|0\rangle$ 提供了封闭公式,并展示了如何高效地描述双覆盖中的群乘法,而无需在指数大甚至无限大的空间中进行忠实表示。我们的构造依赖于这些双群(元折射群、自旋群)在交折群和正交群元素以及扭曲 U(1) 群方面的明确参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信