MSP theory for smooth Calabi-Yau threefolds in weighted $\mathbb{P}^4$

Patrick Lei
{"title":"MSP theory for smooth Calabi-Yau threefolds in weighted $\\mathbb{P}^4$","authors":"Patrick Lei","doi":"arxiv-2409.11660","DOIUrl":null,"url":null,"abstract":"We develop the theory of $N$-mixed-spin-$P$ fields for Fermat-type\nhypersurfaces in $\\mathbb{P}(1,1,1,1,2)$, $\\mathbb{P}(1,1,1,1,4)$, and\n$\\mathbb{P}(1,1,1,1,4)$, following the theory developed in arXiv:1809.08806 for\nthe quintic threefold.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the theory of $N$-mixed-spin-$P$ fields for Fermat-type hypersurfaces in $\mathbb{P}(1,1,1,1,2)$, $\mathbb{P}(1,1,1,1,4)$, and $\mathbb{P}(1,1,1,1,4)$, following the theory developed in arXiv:1809.08806 for the quintic threefold.
加权 $\mathbb{P}^4$ 中光滑 Calabi-Yau 三褶的 MSP 理论
我们发展了$\mathbb{P}(1,1,1,1,2)$、$\mathbb{P}(1,1,1,1,4)$和$\mathbb{P}(1,1,1,1,4)$中费马型超曲面的$N$混合自旋-$P$场理论,沿用了arXiv:1809.08806中针对五元三次方发展的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信