Steady compressible Navier-Stokes-Fourier system with slip boundary conditions arising from kinetic theory

Renjun Duan, Junhao Zhang
{"title":"Steady compressible Navier-Stokes-Fourier system with slip boundary conditions arising from kinetic theory","authors":"Renjun Duan, Junhao Zhang","doi":"arxiv-2409.11809","DOIUrl":null,"url":null,"abstract":"This paper studies the boundary value problem on the steady compressible\nNavier-Stokes-Fourier system in a channel domain $(0,1)\\times\\mathbb{T}^2$ with\na class of generalized slip boundary conditions that were systematically\nderived from the Boltzmann equation by Coron \\cite{Coron-JSP-1989} and later by\nAoki et al\n\\cite{Aoki-Baranger-Hattori-Kosuge-Martalo-Mathiaud-Mieussens-JSP-2017}. We\nestablish the existence and uniqueness of strong solutions in $(L_{0}^{2}\\cap\nH^{2}(\\Omega))\\times V^{3}(\\Omega)\\times H^{3}(\\Omega)$ provided that the wall\ntemperature is near a positive constant. The proof relies on the construction\nof a new variational formulation for the corresponding linearized problem and\nemploys a fixed point argument. The main difficulty arises from the interplay\nof velocity and temperature derivatives together with the effect of density\ndependence on the boundary.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the boundary value problem on the steady compressible Navier-Stokes-Fourier system in a channel domain $(0,1)\times\mathbb{T}^2$ with a class of generalized slip boundary conditions that were systematically derived from the Boltzmann equation by Coron \cite{Coron-JSP-1989} and later by Aoki et al \cite{Aoki-Baranger-Hattori-Kosuge-Martalo-Mathiaud-Mieussens-JSP-2017}. We establish the existence and uniqueness of strong solutions in $(L_{0}^{2}\cap H^{2}(\Omega))\times V^{3}(\Omega)\times H^{3}(\Omega)$ provided that the wall temperature is near a positive constant. The proof relies on the construction of a new variational formulation for the corresponding linearized problem and employs a fixed point argument. The main difficulty arises from the interplay of velocity and temperature derivatives together with the effect of density dependence on the boundary.
带有动力学理论产生的滑移边界条件的稳定可压缩纳维-斯托克斯-傅里叶系统
本文研究了在通道域$(0,1)\times\mathbb{T}^2$中稳定的可压缩纳维尔-斯托克斯-傅里叶系统的边界值问题,该问题具有一类广义滑移边界条件,Coron (cite{Coron-JSP-1989})以及后来的Aoki et al (cite{Aoki-Baranger-Hattori-Kosuge-Martalo-Mathiaud-Mieussens-JSP-2017}从玻尔兹曼方程中系统地导出了这类边界条件。我们在壁温接近正常数的条件下,建立了$(L_{0}^{2}\capH^{2}(\Omega))\times V^{3}(\Omega)\times H^{3}(\Omega)$中强解的存在性和唯一性。证明依赖于为相应的线性化问题构建一个新的变分公式,并采用定点论证。主要困难来自速度和温度导数的相互作用,以及边界密度依赖性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信