A Stochastic Origin of Spacetime Non-Commutativity

Michele Arzano, Folkert Kuipers
{"title":"A Stochastic Origin of Spacetime Non-Commutativity","authors":"Michele Arzano, Folkert Kuipers","doi":"arxiv-2409.11866","DOIUrl":null,"url":null,"abstract":"We propose a stochastic interpretation of spacetime non-commutativity\nstarting from the path integral formulation of quantum mechanical commutation\nrelations. We discuss how the (non-)commutativity of spacetime is inherently\nrelated to the continuity or discontinuity of paths in the path integral\nformulation. Utilizing Wiener processes, we demonstrate that continuous paths\nlead to commutative spacetime, whereas discontinuous paths correspond to\nnon-commutative spacetime structures. As an example we introduce discontinuous\npaths from which the $\\kappa$-Minkowski spacetime commutators can be obtained.\nMoreover we focus on modifications of the Leibniz rule for differentials acting\non discontinuous trajectories. We show how these can be related to the deformed\naction of translation generators focusing, as a working example, on the\n$\\kappa$-Poincar\\'e algebra. Our findings suggest that spacetime\nnon-commutativity can be understood as a result of fundamental discreteness of\nspacetime.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a stochastic interpretation of spacetime non-commutativity starting from the path integral formulation of quantum mechanical commutation relations. We discuss how the (non-)commutativity of spacetime is inherently related to the continuity or discontinuity of paths in the path integral formulation. Utilizing Wiener processes, we demonstrate that continuous paths lead to commutative spacetime, whereas discontinuous paths correspond to non-commutative spacetime structures. As an example we introduce discontinuous paths from which the $\kappa$-Minkowski spacetime commutators can be obtained. Moreover we focus on modifications of the Leibniz rule for differentials acting on discontinuous trajectories. We show how these can be related to the deformed action of translation generators focusing, as a working example, on the $\kappa$-Poincar\'e algebra. Our findings suggest that spacetime non-commutativity can be understood as a result of fundamental discreteness of spacetime.
时空非共时性的随机起源
我们从量子力学换向关系的路径积分公式出发,提出了时空非换向性的随机解释。我们讨论了时空的(非)换向性如何与路径积分公式中路径的连续性或不连续性存在内在联系。利用维纳过程,我们证明连续路径导致换向时空,而不连续路径对应于非换向时空结构。作为一个例子,我们引入了非连续路径,从中可以得到 $\kappa$-Minkowski 时空交换器。我们以$\kappa$-Poincar\'e 代数为例,展示了这些修正如何与平移发生器的变形作用相关联。我们的研究结果表明,时空的基本离散性可以被理解为时空的交换性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信