H. J. Richter, G. Mihajlović, R. V. Chopdekar, W. Jung, J. Gibbons, N. D. Melendez, M. K. Grobis, T. S. Santos
{"title":"Thermal effects on damping determination of perpendicular MRAM devices by spin-torque ferromagnetic resonance","authors":"H. J. Richter, G. Mihajlović, R. V. Chopdekar, W. Jung, J. Gibbons, N. D. Melendez, M. K. Grobis, T. S. Santos","doi":"10.1063/5.0231388","DOIUrl":null,"url":null,"abstract":"We report device-level damping measurements using spin-torque driven ferromagnetic resonance on perpendicular magnetic random-access memory cells. It is shown that thermal agitation enhances the apparent damping for cells smaller than about 55 nm. The effect is fundamental and does not reflect a true damping increase. In addition to the thermal effect, it is still found that device-level damping is higher than film-level damping and increases with decreasing cell size. This is attributed to edge damage caused by device patterning.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"41 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0231388","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We report device-level damping measurements using spin-torque driven ferromagnetic resonance on perpendicular magnetic random-access memory cells. It is shown that thermal agitation enhances the apparent damping for cells smaller than about 55 nm. The effect is fundamental and does not reflect a true damping increase. In addition to the thermal effect, it is still found that device-level damping is higher than film-level damping and increases with decreasing cell size. This is attributed to edge damage caused by device patterning.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces