Piezo-photocatalysis synergy in γ-GeSe for highly efficient oxygen evolution reaction

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Tianqi Zhang, Long Zhou, Guobo Chen, Songrui Wei, Rong Sun, Yunping Li, Lijian Meng, Guanglong Zhang, Shuwei Xia, Zhongchang Wang, Meng Qiu
{"title":"Piezo-photocatalysis synergy in γ-GeSe for highly efficient oxygen evolution reaction","authors":"Tianqi Zhang, Long Zhou, Guobo Chen, Songrui Wei, Rong Sun, Yunping Li, Lijian Meng, Guanglong Zhang, Shuwei Xia, Zhongchang Wang, Meng Qiu","doi":"10.1063/5.0217893","DOIUrl":null,"url":null,"abstract":"Solar-driven semiconductor photocatalysts are highly appealing in applications of environmental remediation and energy conversion. However, photocatalytic reactions, particularly oxygen evolution reaction (OER), are often constrained by the swift recombination of electron–hole pairs, thereby resulting in low reaction efficiency. Although it is effective to separate charge carriers by constructing heterojunctions to form built-in electric field, the lattice mismatch and inefficient interlayer charge transfer of heterojunctions in the photocatalysts limit their further development. Here, we propose a new strategy by constructing an internal electric field for OER through an individual piezoelectric two-dimensional material. The results indicate that the piezoelectric effect regulates the electronic structure, reduces bandgap, improves light absorption efficiency, and that the displacement of positive and negative charge centers is the key factor in the enhanced OER. This research indicates the feasibility of combining piezoelectric properties of two-dimensional materials with OER (1.19 eV), providing new insights and guidance for applying the piezoelectric effect in the OER and opening up a way to promote efficient separation of charge carriers.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"25 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217893","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven semiconductor photocatalysts are highly appealing in applications of environmental remediation and energy conversion. However, photocatalytic reactions, particularly oxygen evolution reaction (OER), are often constrained by the swift recombination of electron–hole pairs, thereby resulting in low reaction efficiency. Although it is effective to separate charge carriers by constructing heterojunctions to form built-in electric field, the lattice mismatch and inefficient interlayer charge transfer of heterojunctions in the photocatalysts limit their further development. Here, we propose a new strategy by constructing an internal electric field for OER through an individual piezoelectric two-dimensional material. The results indicate that the piezoelectric effect regulates the electronic structure, reduces bandgap, improves light absorption efficiency, and that the displacement of positive and negative charge centers is the key factor in the enhanced OER. This research indicates the feasibility of combining piezoelectric properties of two-dimensional materials with OER (1.19 eV), providing new insights and guidance for applying the piezoelectric effect in the OER and opening up a way to promote efficient separation of charge carriers.
γ-GeSe中的压电光催化协同作用促进高效氧气进化反应
太阳能驱动的半导体光催化剂在环境修复和能源转换应用中极具吸引力。然而,光催化反应,尤其是氧进化反应(OER),往往受到电子-空穴对迅速重组的限制,从而导致反应效率低下。虽然通过构建异质结形成内置电场来分离电荷载流子是有效的,但光催化剂中异质结的晶格失配和低效的层间电荷转移限制了其进一步发展。在此,我们提出了一种新策略,即通过单独的压电二维材料构建内部电场来实现 OER。研究结果表明,压电效应可以调节电子结构、减小带隙、提高光吸收率,而正负电荷中心的位移是增强 OER 的关键因素。该研究表明,将二维材料的压电特性与 OER(1.19 eV)相结合是可行的,为在 OER 中应用压电效应提供了新的见解和指导,并开辟了一条促进电荷载流子高效分离的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信