{"title":"Fast inverse design of microwave and infrared Bi-stealth metamaterials based on equivalent circuit model","authors":"Shiju Liu, Fengjie Zhu, Jianguang Huang, Hua Zhao, Mengqi Han, Kebin Fan, Ping Chen","doi":"10.1063/5.0222949","DOIUrl":null,"url":null,"abstract":"This work proposed a fast inverse design method for microwave and infrared (IR) bi-stealth metamaterials based on the equivalent circuit model (ECM). Using this method, we designed a microwave and IR bi-stealth metamaterial by deploying a multilayered structure of the indium tin oxide (ITO) film based metasurface. First, the IR emissivity of the ITO film was calculated in the framework of the ECM. Then, an ITO metasurface was proposed to implement low IR emission and high microwave transmission simultaneously. Based on the ECM of the square patch, the ECM of the whole metamaterial was established at the microwave band. An inverse design program was built by incorporating the ECM with genetic algorithm (GA). Structure parameters of the metamaterial were optimized by GA to achieve the broadest microwave stealth bandwidth for the given thickness. Finally, the sample of the optimized bi-stealth metamaterial was prepared and tested. The calculated, simulated, and measured results are in good agreement, showing that such a metamaterial has an IR emissivity of 0.18 in the band from 3 to 14 μm and an efficient microwave stealth band from 4.8 to 17 GHz with a thickness of 4.9 mm. The proposed method will benefit the design and application of microwave and IR bi-stealth metamaterials.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"99 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222949","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposed a fast inverse design method for microwave and infrared (IR) bi-stealth metamaterials based on the equivalent circuit model (ECM). Using this method, we designed a microwave and IR bi-stealth metamaterial by deploying a multilayered structure of the indium tin oxide (ITO) film based metasurface. First, the IR emissivity of the ITO film was calculated in the framework of the ECM. Then, an ITO metasurface was proposed to implement low IR emission and high microwave transmission simultaneously. Based on the ECM of the square patch, the ECM of the whole metamaterial was established at the microwave band. An inverse design program was built by incorporating the ECM with genetic algorithm (GA). Structure parameters of the metamaterial were optimized by GA to achieve the broadest microwave stealth bandwidth for the given thickness. Finally, the sample of the optimized bi-stealth metamaterial was prepared and tested. The calculated, simulated, and measured results are in good agreement, showing that such a metamaterial has an IR emissivity of 0.18 in the band from 3 to 14 μm and an efficient microwave stealth band from 4.8 to 17 GHz with a thickness of 4.9 mm. The proposed method will benefit the design and application of microwave and IR bi-stealth metamaterials.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces