Alessandro Rossi, Ian Buchanan, Alberto Astolfo, Martyna Michalska, Daniel Briglin, Anton Charman, Daniel Josell, Sandro Olivo, Ioannis Papakonstantinou
{"title":"Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy","authors":"Alessandro Rossi, Ian Buchanan, Alberto Astolfo, Martyna Michalska, Daniel Briglin, Anton Charman, Daniel Josell, Sandro Olivo, Ioannis Papakonstantinou","doi":"arxiv-2409.11237","DOIUrl":null,"url":null,"abstract":"X-ray phase contrast imaging (XPCI) provides higher sensitivity to contrast\nbetween low absorbing objects that can be invisible to conventional\nattenuation-based X-ray imaging. XPCI's main application has been so far\nfocused on medical areas at relatively low energies (< 100 keV). The\ntranslation to higher energy for industrial applications, where energies above\n150 keV are often needed, is hindered by the lack of masks/gratings with\nsufficiently thick gold septa. Fabricating such structures with apertures of\ntens of micrometers becomes difficult at depths greater than a few hundreds of\nmicrometers due to aspect ratio dependent effects such as anisotropic etching,\nand preferential gold (Au) deposition at the top of the apertures. In this\nwork, these difficulties are overcome by Deep Reactive Ion Etching optimized by\na stepped parameters approach and bismuth-mediated superconformal filling of\nAu, ultimately resulting in 500 micrometers deep silicon masks filled with Au\nat bulk density. The obtained masks, tested in an Edge Illumination XPCI system\nwith a conventional source and a photon-counting detector, show good agreement\nwith simulations at different energy thresholds. They also demonstrate a higher\nphase sensitivity for highly absorbing objects when compared to lower aspect\nratio masks, proving their potential for industrial non-destructive testing.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray phase contrast imaging (XPCI) provides higher sensitivity to contrast
between low absorbing objects that can be invisible to conventional
attenuation-based X-ray imaging. XPCI's main application has been so far
focused on medical areas at relatively low energies (< 100 keV). The
translation to higher energy for industrial applications, where energies above
150 keV are often needed, is hindered by the lack of masks/gratings with
sufficiently thick gold septa. Fabricating such structures with apertures of
tens of micrometers becomes difficult at depths greater than a few hundreds of
micrometers due to aspect ratio dependent effects such as anisotropic etching,
and preferential gold (Au) deposition at the top of the apertures. In this
work, these difficulties are overcome by Deep Reactive Ion Etching optimized by
a stepped parameters approach and bismuth-mediated superconformal filling of
Au, ultimately resulting in 500 micrometers deep silicon masks filled with Au
at bulk density. The obtained masks, tested in an Edge Illumination XPCI system
with a conventional source and a photon-counting detector, show good agreement
with simulations at different energy thresholds. They also demonstrate a higher
phase sensitivity for highly absorbing objects when compared to lower aspect
ratio masks, proving their potential for industrial non-destructive testing.