On the number of irreducible factors with a given multiplicity in function fields

Sourabhashis Das, Ertan Elma, Wentang Kuo, Yu-Ru Liu
{"title":"On the number of irreducible factors with a given multiplicity in function fields","authors":"Sourabhashis Das, Ertan Elma, Wentang Kuo, Yu-Ru Liu","doi":"arxiv-2409.08559","DOIUrl":null,"url":null,"abstract":"Let $k \\geq 1$ be a natural number and $f \\in \\mathbb{F}_q[t]$ be a monic\npolynomial. Let $\\omega_k(f)$ denote the number of distinct monic irreducible\nfactors of $f$ with multiplicity $k$. We obtain asymptotic estimates for the\nfirst and the second moments of $\\omega_k(f)$ with $k \\geq 1$. Moreover, we\nprove that the function $\\omega_1(f)$ has normal order $\\log (\\text{deg}(f))$\nand also satisfies the Erd\\H{o}s-Kac Theorem. Finally, we prove that the\nfunctions $\\omega_k(f)$ with $k \\geq 2$ do not have normal order.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k \geq 1$ be a natural number and $f \in \mathbb{F}_q[t]$ be a monic polynomial. Let $\omega_k(f)$ denote the number of distinct monic irreducible factors of $f$ with multiplicity $k$. We obtain asymptotic estimates for the first and the second moments of $\omega_k(f)$ with $k \geq 1$. Moreover, we prove that the function $\omega_1(f)$ has normal order $\log (\text{deg}(f))$ and also satisfies the Erd\H{o}s-Kac Theorem. Finally, we prove that the functions $\omega_k(f)$ with $k \geq 2$ do not have normal order.
论函数场中具有给定乘数的不可还原因子数
让 $k \geq 1$ 是一个自然数,$f \in \mathbb{F}_q[t]$ 是一个单项式。让 $\omega_k(f)$ 表示乘数为 $k$ 的 $f$ 的独特单项式不可还原因子的个数。我们得到了 $k \geq 1$ 时 $\omega_k(f)$的第一矩和第二矩的渐近估计值。此外,我们还证明了函数 $\omega_1(f)$ 具有法阶 $\log (\text{deg}(f))$ 并且满足 Erd\H{o}s-Kac 定理。最后,我们证明 $k \geq 2$ 的函数 $\omega_k(f)$不具有正常阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信