On the Artin formalism for triple product $p$-adic $L$-functions: Chow--Heegner points vs. Heegner points

Kâzım Büyükboduk, Daniele Casazza, Aprameyo Pal, Carlos de Vera-Piquero
{"title":"On the Artin formalism for triple product $p$-adic $L$-functions: Chow--Heegner points vs. Heegner points","authors":"Kâzım Büyükboduk, Daniele Casazza, Aprameyo Pal, Carlos de Vera-Piquero","doi":"arxiv-2409.08645","DOIUrl":null,"url":null,"abstract":"Our main objective in this paper (which is expository for the most part) is\nto study the necessary steps to prove a factorization formula for a certain\ntriple product $p$-adic $L$-function guided by the Artin formalism. The key\ningredients are: a) the explicit reciprocity laws governing the relationship of\ndiagonal cycles and generalized Heegner cycles to $p$-adic $L$-functions; b) a\ncareful comparison of Chow--Heegner points and twisted Heegner points in Hida\nfamilies, via formulae of Gross--Zagier type.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our main objective in this paper (which is expository for the most part) is to study the necessary steps to prove a factorization formula for a certain triple product $p$-adic $L$-function guided by the Artin formalism. The key ingredients are: a) the explicit reciprocity laws governing the relationship of diagonal cycles and generalized Heegner cycles to $p$-adic $L$-functions; b) a careful comparison of Chow--Heegner points and twisted Heegner points in Hida families, via formulae of Gross--Zagier type.
关于 $p$-adic $L$ 函数的三重乘 $p$-adic $L$ 函数的阿廷形式主义:周--黑格纳点与黑格纳点
我们在本文中的主要目的(大部分是说明性的)是研究在阿廷形式主义指导下证明某个三乘积 $p$-adic $L$ 函数的因式分解公式的必要步骤。主要内容包括:a) 对角循环和广义海格纳循环与 p$-adic $L$ 函数关系的明确互易律;b) 通过格罗斯--扎吉尔类型的公式,仔细比较周--海格纳点和 Hidafamilies 中的扭曲海格纳点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信