Elated Numbers

N. Bradley Fox, Nathan H. Fox, Helen G. Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot
{"title":"Elated Numbers","authors":"N. Bradley Fox, Nathan H. Fox, Helen G. Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot","doi":"arxiv-2409.09863","DOIUrl":null,"url":null,"abstract":"For a base $b \\geq 2$, the $b$-elated function, $E_{2,b}$, maps a positive\ninteger written in base $b$ to the product of its leading digit and the sum of\nthe squares of its digits. A $b$-elated number is a positive integer that maps\nto $1$ under iteration of $E_{2,b}$. The height of a $b$-elated number is the\nnumber of iterations required to map it to $1$. We determine the fixed points\nand cycles of $E_{2,b}$ and prove a range of results concerning sequences of\n$b$-elated numbers and $b$-elated numbers of minimal heights. Although the\n$b$-elated function is closely related to the $b$-happy function, the behaviors\nof the two are notably different, as demonstrated by the results in this work.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a base $b \geq 2$, the $b$-elated function, $E_{2,b}$, maps a positive integer written in base $b$ to the product of its leading digit and the sum of the squares of its digits. A $b$-elated number is a positive integer that maps to $1$ under iteration of $E_{2,b}$. The height of a $b$-elated number is the number of iterations required to map it to $1$. We determine the fixed points and cycles of $E_{2,b}$ and prove a range of results concerning sequences of $b$-elated numbers and $b$-elated numbers of minimal heights. Although the $b$-elated function is closely related to the $b$-happy function, the behaviors of the two are notably different, as demonstrated by the results in this work.
欣喜的数字
对于一个基数 $b \geq 2$,$b$相关函数 $E_{2,b}$可以将一个以基数 $b$ 写成的正整数映射为其前导数与各数位平方和的乘积。一个与$b$相关的数是一个在$E_{2,b}$迭代下映射为$1$的正整数。一个与$b$相关的数的高度是将它映射到$1$所需的迭代次数。我们确定了$E_{2,b}$的定点和循环,并证明了一系列关于b$相关数序列和高度最小的b$相关数的结果。尽管b$相关函数与b$快乐函数密切相关,但正如本作品的结果所证明的,两者的行为明显不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信