Hypertranscendence and $q$-difference equations over elliptic functionfields

Ehud de ShalitUT3, IMT, IUF, Charlotte HardouinUT3, IMT, IUF, Julien RoquesICJ, CTN
{"title":"Hypertranscendence and $q$-difference equations over elliptic functionfields","authors":"Ehud de ShalitUT3, IMT, IUF, Charlotte HardouinUT3, IMT, IUF, Julien RoquesICJ, CTN","doi":"arxiv-2409.10092","DOIUrl":null,"url":null,"abstract":"The differential nature of solutions of linear difference equations over the\nprojective line was recently elucidated. In contrast, little is known about the\ndifferential nature of solutions of linear difference equations over elliptic\ncurves. In the present paper, we study power series $f(z)$ with complex\ncoefficients satisfying a linear difference equation over a field of elliptic\nfunctions $K$,with respect to the difference operator $\\phi f(z)=f(qz)$, $2\\le\nq\\in\\mathbb{Z}$,arising from an endomorphism of the elliptic curve. Our main\ntheoremsays that such an $f$ satisfies, in addition, a polynomial\ndifferentialequation with coefficients from $K,$ if and only if it belongs\ntothe ring $S=K[z,z^{-1},\\zeta(z,\\Lambda)]$ generated over $K$ by$z,z^{-1}$ and\nthe Weierstrass $\\zeta$-function. This is the first elliptic extension of\nrecent theorems of Adamczewski, Dreyfus and Hardouin concerning the\ndifferential transcendence of solutions of difference equations with\ncoefficients in $\\mathbb{C}(z),$ in which various difference operators were\nconsidered (shifts, $q$-differenceoperators or Mahler operators). While the\ngeneral approach, of usingparametrized Picard-Vessiot theory, is similar, many\nfeatures, andin particular the emergence of monodromy considerations and the\nring$S$, are unique to the elliptic case and are responsible for non-trivial\ndifficulties. We emphasize that, among the intermediate results, we prove an\nintegrability result for difference-differential systems over ellipticcurves\nwhich is a genus one analogue of the integrability results obtained by\nSch\\''afke and Singer over the projective line.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The differential nature of solutions of linear difference equations over the projective line was recently elucidated. In contrast, little is known about the differential nature of solutions of linear difference equations over elliptic curves. In the present paper, we study power series $f(z)$ with complex coefficients satisfying a linear difference equation over a field of elliptic functions $K$,with respect to the difference operator $\phi f(z)=f(qz)$, $2\le q\in\mathbb{Z}$,arising from an endomorphism of the elliptic curve. Our main theoremsays that such an $f$ satisfies, in addition, a polynomial differentialequation with coefficients from $K,$ if and only if it belongs tothe ring $S=K[z,z^{-1},\zeta(z,\Lambda)]$ generated over $K$ by$z,z^{-1}$ and the Weierstrass $\zeta$-function. This is the first elliptic extension of recent theorems of Adamczewski, Dreyfus and Hardouin concerning the differential transcendence of solutions of difference equations with coefficients in $\mathbb{C}(z),$ in which various difference operators were considered (shifts, $q$-differenceoperators or Mahler operators). While the general approach, of usingparametrized Picard-Vessiot theory, is similar, many features, andin particular the emergence of monodromy considerations and the ring$S$, are unique to the elliptic case and are responsible for non-trivial difficulties. We emphasize that, among the intermediate results, we prove an integrability result for difference-differential systems over ellipticcurves which is a genus one analogue of the integrability results obtained by Sch\''afke and Singer over the projective line.
椭圆函数域上的超超越和 $q$ 差分方程
最近,人们阐明了投影线上线性差分方程解的微分性质。相比之下,人们对椭圆曲线上线性差分方程解的微分性质知之甚少。在本文中,我们研究了满足椭圆函数域 $K$ 上线性差分方程的具有复系数的幂级数 $f(z)$,关于差分算子 $\phi f(z)=f(qz)$, $2\leq\in\mathbb{Z}$, 由椭圆曲线的内定形产生。我们的主要定理指出,当且仅当这样的 $f$ 属于由$z,z^{-1}$和韦尔斯特拉斯$\zeta$函数在$K$上生成的环$S=K[z,z^{-1},\zeta(z,\Lambda)]$时,它还满足一个系数来自$K的多项式微分方程。这是 Adamczewski、Dreyfus 和 Hardouin 等人关于具有 $\mathbb{C}(z) $ 中系数的差分方程解的微分超越性定理的第一个椭圆扩展,其中考虑了各种差分算子(移位、$q$-差分算子或马勒算子)。虽然使用参数化皮卡-维西奥理论的一般方法是相似的,但许多特征,特别是单色性考虑和ering$S$的出现,是椭圆情形所独有的,是造成非三维困难的原因。我们强调,在中间结果中,我们证明了椭圆曲线上差分-微分系统的可整性结果,它是 Sch\''afke 和 Singer 在投影直线上得到的可整性结果的一属类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信