On zero-density estimates for Beurling zeta functions

Frederik Broucke
{"title":"On zero-density estimates for Beurling zeta functions","authors":"Frederik Broucke","doi":"arxiv-2409.10051","DOIUrl":null,"url":null,"abstract":"We show the zero-density estimate \\[ N(\\zeta_{\\mathcal{P}}; \\alpha, T) \\ll\nT^{\\frac{4(1-\\alpha)}{3-2\\alpha-\\theta}}(\\log T)^{9} \\] for Beurling zeta\nfunctions $\\zeta_{\\mathcal{P}}$ attached to Beurling generalized number systems\nwith integers distributed as $N_{\\mathcal{P}}(x) = Ax + O(x^{\\theta})$. We also\nshow a similar zero-density estimate for a broader class of general Dirichlet\nseries, consider improvements conditional on finer pointwise or $L^{2k}$-bounds\nof $\\zeta_{\\mathcal{P}}$, and discuss some optimality questions.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show the zero-density estimate \[ N(\zeta_{\mathcal{P}}; \alpha, T) \ll T^{\frac{4(1-\alpha)}{3-2\alpha-\theta}}(\log T)^{9} \] for Beurling zeta functions $\zeta_{\mathcal{P}}$ attached to Beurling generalized number systems with integers distributed as $N_{\mathcal{P}}(x) = Ax + O(x^{\theta})$. We also show a similar zero-density estimate for a broader class of general Dirichlet series, consider improvements conditional on finer pointwise or $L^{2k}$-bounds of $\zeta_{\mathcal{P}}$, and discuss some optimality questions.
关于 Beurling 兹塔函数的零密度估计
我们展示了零密度估计值 ([ N(\zeta_\mathcal{P}}; \alpha, T) \llT^{frac{4(1-\alpha)}{3-2\alpha-\theta}}(\log T)^{9}] for Beurling zetafunctions $\zeta_\mathcal{P}}$ attached with integers distributed as $N_{\mathcal{P}}.\[]布尔林零函数 $\zeta_{\mathcal{P}}$ 附于布尔林广义数系统,其整数分布为 $N_{\mathcal{P}}(x) = Ax + O(x^{\theta})$ 。我们还展示了对更广泛的一般 Dirichlets 序列的类似零密度估计,考虑了对 $\zeta_{mathcal{P}}$ 的更精细点或 $L^{2k}$ 约束的改进,并讨论了一些最优性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信