The central limit theorem for entries of random matrices with specific rank over finite fields

Chin Hei Chan, Maosheng Xiong
{"title":"The central limit theorem for entries of random matrices with specific rank over finite fields","authors":"Chin Hei Chan, Maosheng Xiong","doi":"arxiv-2409.10412","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{F}_q$ be the finite field of order $q$, and $\\mathcal{A}$ a\nnon-empty proper subset of $\\mathbb{F}_q$. Let $\\mathbf{M}$ be a random $m\n\\times n$ matrix of rank $r$ over $\\mathbb{F}_q$ taken with uniform\ndistribution. It was proved recently by Sanna that as $m,n \\to \\infty$ and\n$r,q,\\mathcal{A}$ are fixed, the number of entries of $\\mathbf{M}$ in\n$\\mathcal{A}$ approaches a normal distribution. The question was raised as to\nwhether or not one can still obtain a central limit theorem of some sort when\n$r$ goes to infinity in a way controlled by $m$ and $n$. In this paper we\nanswer this question affirmatively.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb{F}_q$ be the finite field of order $q$, and $\mathcal{A}$ a non-empty proper subset of $\mathbb{F}_q$. Let $\mathbf{M}$ be a random $m \times n$ matrix of rank $r$ over $\mathbb{F}_q$ taken with uniform distribution. It was proved recently by Sanna that as $m,n \to \infty$ and $r,q,\mathcal{A}$ are fixed, the number of entries of $\mathbf{M}$ in $\mathcal{A}$ approaches a normal distribution. The question was raised as to whether or not one can still obtain a central limit theorem of some sort when $r$ goes to infinity in a way controlled by $m$ and $n$. In this paper we answer this question affirmatively.
有限域上特定秩随机矩阵条目的中心极限定理
让 $\mathbb{F}_q$ 是阶为 $q$ 的有限域,而 $\mathcal{A}$ 是 $\mathbb{F}_q$ 的一个非空适当子集。让 $mathbf{M}$ 是在 $\mathbb{F}_q$ 上以均匀分布取的秩为 $r$ 的随机 $m/times n$ 矩阵。桑纳最近证明,当 $m,n 到 \infty$ 和 $r,q,\mathcal{A}$ 固定时,$mathbf{M}$ 在 $mathcal{A}$ 中的条目数接近正态分布。有人提出这样一个问题:当 $r$ 以一种受 $m$ 和 $n$ 控制的方式达到无穷大时,我们是否还能得到某种中心极限定理?在本文中,我们肯定地回答了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信