Endomorphism Rings of Supersingular Elliptic Curves and Quadratic Forms

Guanju Xiao, Zijian Zhou, Longjiang Qu
{"title":"Endomorphism Rings of Supersingular Elliptic Curves and Quadratic Forms","authors":"Guanju Xiao, Zijian Zhou, Longjiang Qu","doi":"arxiv-2409.11025","DOIUrl":null,"url":null,"abstract":"Given a supersingular elliptic curve, the supersingular endomorphism ring\nproblem is to compute all of its endomorphisms. We use the correspondence\nbetween maximal orders in quaternion algebra $B_{p,\\infty}$ and positive\nternary quadratic forms with discriminant $p$ to solve the supersingular\nendomorphism ring problem. Let $c<3p/16$ be a prime or $c=1$. Let $E$ be a\n$\\mathbb{Z}[\\sqrt{-cp}]$-oriented supersingular elliptic curve defined over\n$\\mathbb{F}_{p^2}$. There exists a subgroup $G$ of order $c$, and\n$\\text{End}(E,G)$ is isomorphic to an Eichler order in $B_{p,\\infty}$ of level\n$c$. If the endomorphism ring $\\text{End}(E,G)$ is known, then we can compute\n$\\text{End}(E)$ by solving two square roots in $\\mathbb{F}_c$. In particular,\nlet $D<p$ be a prime. If an imaginary quadratic order with discriminant $-D$ or\n$-4D$ can be embedded into $\\text{End}(E)$, then we can compute $\\text{End}(E)$\nby solving one square root in $\\mathbb{F}_D$ and two square roots in\n$\\mathbb{F}_c$. As we know, isogenies between supersingular elliptic curves can be translated\nto kernel ideals of endomorphism rings. We study the action of these kernel\nideals and express right orders of them by ternary quadratic forms.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a supersingular elliptic curve, the supersingular endomorphism ring problem is to compute all of its endomorphisms. We use the correspondence between maximal orders in quaternion algebra $B_{p,\infty}$ and positive ternary quadratic forms with discriminant $p$ to solve the supersingular endomorphism ring problem. Let $c<3p/16$ be a prime or $c=1$. Let $E$ be a $\mathbb{Z}[\sqrt{-cp}]$-oriented supersingular elliptic curve defined over $\mathbb{F}_{p^2}$. There exists a subgroup $G$ of order $c$, and $\text{End}(E,G)$ is isomorphic to an Eichler order in $B_{p,\infty}$ of level $c$. If the endomorphism ring $\text{End}(E,G)$ is known, then we can compute $\text{End}(E)$ by solving two square roots in $\mathbb{F}_c$. In particular, let $D
超奇异椭圆曲线和二次型的同构环
给定一条超椭圆曲线,超椭圆内态环问题就是计算它的所有内态。我们利用四元代数中的最大阶 $B_{p,\infty}$ 与判别式为 $p$ 的正二次型之间的对应关系来解决超椭圆内定型环问题。让 $c<3p/16$ 是素数或 $c=1$。让 $E$ 是定义在 $mathbb{F}_{p^2}$ 上的、面向 $mathbb{Z}[\sqrt{-cp}]$ 的超椭圆曲线。存在一个阶为$c$的子群$G$,并且$text{End}(E,G)$ 与阶为$c$的$B_{p,\infty}$中的艾希勒阶同构。如果已知内定环 $\text{End}(E,G)$,那么我们可以通过求解 $\mathbb{F}_c$ 中的两个平方根来计算 $\text{End}(E)$。特别地,让 $D
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信