Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission

Nima Taghipour, Mariona Dalmases, Guy Luke Whitworth, Yongjie Wang, Gerasimos Konstantatos
{"title":"Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission","authors":"Nima Taghipour, Mariona Dalmases, Guy Luke Whitworth, Yongjie Wang, Gerasimos Konstantatos","doi":"arxiv-2409.11982","DOIUrl":null,"url":null,"abstract":"Achieving low-threshold infrared stimulated emission in solution-processed\nquantum dots is critical to enable real-life application including photonic\nintegrated circuits (PICs), LIDAR application and optical telecommunication.\nHowever, realization of low threshold infrared gain is fundamentally\nchallenging due to high degeneracy of the first emissive state (e.g., 8-fold)\nand fast Auger recombination. In this letter, we demonstrate ultralow-threshold\ninfrared stimulated emission with an onset of 110 uJ.cm-2 employing cascade\ncharge transfer (CT) in Pb-chalcogenide colloidal quantum dot (CQD) solids. In\ndoing so, we investigate this idea in two different architectures including a\nmixture of multiband gap CQDs and layer-by-layer (LBL) configuration. Using\ntransient absorption spectroscopy, we show ultrafast cascade CT from large\nband-gap PbS CQD to small band-gap PbS/PbSSe core/shell CQDs in LBL (~ 2 ps)\nand mixture (~ 9 ps) configuration. These results indicate the feasibility of\nusing cascade CT as an efficient method to reduce optical gain threshold in CQD\nsolid films.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving low-threshold infrared stimulated emission in solution-processed quantum dots is critical to enable real-life application including photonic integrated circuits (PICs), LIDAR application and optical telecommunication. However, realization of low threshold infrared gain is fundamentally challenging due to high degeneracy of the first emissive state (e.g., 8-fold) and fast Auger recombination. In this letter, we demonstrate ultralow-threshold infrared stimulated emission with an onset of 110 uJ.cm-2 employing cascade charge transfer (CT) in Pb-chalcogenide colloidal quantum dot (CQD) solids. In doing so, we investigate this idea in two different architectures including a mixture of multiband gap CQDs and layer-by-layer (LBL) configuration. Using transient absorption spectroscopy, we show ultrafast cascade CT from large band-gap PbS CQD to small band-gap PbS/PbSSe core/shell CQDs in LBL (~ 2 ps) and mixture (~ 9 ps) configuration. These results indicate the feasibility of using cascade CT as an efficient method to reduce optical gain threshold in CQD solid films.
多带隙胶体量子点固体中的超快级联电荷转移可降低光增益和受激发射的阈值
在溶液处理量子点中实现低阈值红外激励发射对于实现光子集成电路 (PIC)、激光雷达应用和光通信等实际应用至关重要。然而,由于第一发射态的高变性(如 8 倍)和快速奥杰尔重组,实现低阈值红外增益具有根本性的挑战。在这封信中,我们利用级联电荷转移(CT)技术,在铅-钙镓化合物胶体量子点(CQD)固体中演示了起始点为 110 uJ.cm-2 的超低阈值红外激励发射。为此,我们在两种不同的结构中研究了这一想法,包括多带隙 CQDs 的混合物和逐层(LBL)配置。利用瞬态吸收光谱,我们在 LBL(约 2 ps)和混合物(约 9 ps)配置中展示了从大带隙 PbS CQD 到小带隙 PbS/PbSSe 核/壳 CQD 的超快级联 CT。这些结果表明,级联 CT 是降低 CQD 固体薄膜光增益阈值的一种有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信