Non-linear biphasic mixture model: Existence and uniqueness results

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
Meraj Alam, Adrian Muntean, Raja Sekhar G P
{"title":"Non-linear biphasic mixture model: Existence and uniqueness results","authors":"Meraj Alam, Adrian Muntean, Raja Sekhar G P","doi":"10.1017/s0956792524000251","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the development and analysis of a mathematical model that is motivated by interstitial hydrodynamics and tissue deformation mechanics (poro-elasto-hydrodynamics) within an in-vitro solid tumour. The classical mixture theory is adopted for mass and momentum balance equations for a two-phase system. A main contribution of this study is we treat the physiological transport parameter (i.e., hydraulic resistivity) as anisotropic and heterogeneous, thus the governing system is strongly coupled and non-linear. We derived a weak formulation and then formulated the equivalent fixed-point problem. This enabled us to use the Galerkin method, and the classical results on monotone operators combined with the well-known Schauder and Banach fixed-point theorems to prove the existence and uniqueness of results.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000251","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the development and analysis of a mathematical model that is motivated by interstitial hydrodynamics and tissue deformation mechanics (poro-elasto-hydrodynamics) within an in-vitro solid tumour. The classical mixture theory is adopted for mass and momentum balance equations for a two-phase system. A main contribution of this study is we treat the physiological transport parameter (i.e., hydraulic resistivity) as anisotropic and heterogeneous, thus the governing system is strongly coupled and non-linear. We derived a weak formulation and then formulated the equivalent fixed-point problem. This enabled us to use the Galerkin method, and the classical results on monotone operators combined with the well-known Schauder and Banach fixed-point theorems to prove the existence and uniqueness of results.
非线性双相混合模型:存在性和唯一性结果
本文主要研究体外实体瘤内的间隙流体力学和组织变形力学(孔-胃-流体力学)对数学模型的开发和分析。两相系统的质量和动量平衡方程采用了经典混合物理论。本研究的主要贡献在于,我们将生理传输参数(即水电阻率)视为各向异性的异质参数,因此调控系统是强耦合和非线性的。我们导出了一个弱公式,然后提出了等效定点问题。这使我们能够使用 Galerkin 方法、单调算子的经典结果以及著名的 Schauder 和 Banach 定点定理来证明结果的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信