Salem numbers less than the plastic constant

Jean-Marc Sac-Épée
{"title":"Salem numbers less than the plastic constant","authors":"Jean-Marc Sac-Épée","doi":"arxiv-2409.11159","DOIUrl":null,"url":null,"abstract":"A list of Salem numbers less than $1.3$ is available on M. Mossinghoff's\nwebsite (\\cite{MossinghoffList}). This list is certified complete up to degree\n$44$ in \\cite{MossinghoffRhinWu2008}, and it includes only one Salem number of\ndegree $46$. The objective of the present work is to advance the understanding\nof Salem numbers by extending the list \\cite{MossinghoffList} through the\nprovision of a list of Salem numbers less than the plastic constant, denoted by\n$\\eta$, which is approximately equal to $1.324718$. The algorithmic approach\nused is based on Integer Linear Programming.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A list of Salem numbers less than $1.3$ is available on M. Mossinghoff's website (\cite{MossinghoffList}). This list is certified complete up to degree $44$ in \cite{MossinghoffRhinWu2008}, and it includes only one Salem number of degree $46$. The objective of the present work is to advance the understanding of Salem numbers by extending the list \cite{MossinghoffList} through the provision of a list of Salem numbers less than the plastic constant, denoted by $\eta$, which is approximately equal to $1.324718$. The algorithmic approach used is based on Integer Linear Programming.
小于塑性常数的塞勒姆数
在 M. Mossinghoff 的网站 (\cite{MossinghoffList})上有一个小于 1.3$ 的萨林数列表。在 \cite{MossinghoffRhinWu2008} 中,这个列表被认证为完整到 44 元的度数,而且只包括一个度数为 46 元的塞勒姆数。本研究的目的是通过扩展 \cite{MossinghoffList}列表,提供一个小于可塑常数(用$\ea$表示,约等于$1.324718$)的萨勒姆数列表,来加深对萨勒姆数的理解。使用的算法基于整数线性规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信