Fitting Ideals of Projective Limits of Modules over Non-Noetherian Iwasawa Algebras

Cristian D. Popescu, Wei Yin
{"title":"Fitting Ideals of Projective Limits of Modules over Non-Noetherian Iwasawa Algebras","authors":"Cristian D. Popescu, Wei Yin","doi":"arxiv-2409.11562","DOIUrl":null,"url":null,"abstract":"Greither and Kurihara proved a theorem about the commutativity of projective\nlimits and Fitting ideals for modules over the classical equivariant Iwasawa\nalgebra $\\Lambda_G=\\mathbb{Z}_p[[T]][G]$, where $G$ is a finite, abelian group\nand $\\Bbb Z_p$ is the ring of $p$--adic integers, for some prime $p$. In this\npaper, we generalize their result first to the Noetherian Iwasawa algebra\n$\\mathbb{Z}_p[[T_1, T_2, \\cdots, T_n]][G]$ and, most importantly, to the\nnon-Noetherian algebra $\\mathbb{Z}_p[[T_1, T_2, \\cdots, T_n, \\cdots]][G]$ of\ncountably many generators. The latter generalization is motivated by the recent\nwork of Bley-Popescu on the geometric Equivariant Iwasawa Conjecture for\nfunction fields, where the Iwasawa algebra is not Noetherian, of the type\ndescribed above. Applications of these results to the emerging field of\nnon-Noetherian Iwasawa Theory will be given in an upcoming paper.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Greither and Kurihara proved a theorem about the commutativity of projective limits and Fitting ideals for modules over the classical equivariant Iwasawa algebra $\Lambda_G=\mathbb{Z}_p[[T]][G]$, where $G$ is a finite, abelian group and $\Bbb Z_p$ is the ring of $p$--adic integers, for some prime $p$. In this paper, we generalize their result first to the Noetherian Iwasawa algebra $\mathbb{Z}_p[[T_1, T_2, \cdots, T_n]][G]$ and, most importantly, to the non-Noetherian algebra $\mathbb{Z}_p[[T_1, T_2, \cdots, T_n, \cdots]][G]$ of countably many generators. The latter generalization is motivated by the recent work of Bley-Popescu on the geometric Equivariant Iwasawa Conjecture for function fields, where the Iwasawa algebra is not Noetherian, of the type described above. Applications of these results to the emerging field of non-Noetherian Iwasawa Theory will be given in an upcoming paper.
非etherian岩泽代数上模块的投影极限的拟合顶点
Greither 和 Kurihara 证明了一个关于经典等价岩泽代数 $\Lambda_G=\mathbb{Z}_p[[T]][G]$ 上模块的投影极限和 Fitting 理想的交换性定理,其中 $G$ 是一个有限的无性群,而 $\Bbb Z_p$ 是对于某个素数 $p$ 的 $p$-adic 整数环。在本文中,我们首先把他们的结果推广到了有无数个生成数的 Noetherian 岩泽代数 $/mathbb{Z}_p[[T_1,T_2,\cdots,T_n]][G]$,更重要的是,推广到了有无数个生成数的非 Noetherian 代数 $/mathbb{Z}_p[[T_1,T_2,\cdots,T_n,\cdots]][G]$。后一种泛化的动机来自于布莱-波佩斯库(Bley-Popescu)最近关于函数场的几何等变岩泽猜想的工作,其中岩泽代数不是上述类型的诺特代数。这些结果在非诺特岩泽理论这一新兴领域的应用将在即将发表的论文中给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信