On the structure of the Bloch--Kato Selmer groups of modular forms over anticyclotomic $\mathbf{Z}_p$-towers

Antonio Lei, Luca Mastella, Luochen Zhao
{"title":"On the structure of the Bloch--Kato Selmer groups of modular forms over anticyclotomic $\\mathbf{Z}_p$-towers","authors":"Antonio Lei, Luca Mastella, Luochen Zhao","doi":"arxiv-2409.11966","DOIUrl":null,"url":null,"abstract":"Let $p$ be an odd prime number and let $K$ be an imaginary quadratic field in\nwhich $p$ is split. Let $f$ be a modular form with good reduction at $p$. We\nstudy the variation of the Bloch--Kato Selmer groups and the\nBloch--Kato--Shafarevich--Tate groups of $f$ over the anticyclotomic\n$\\mathbf{Z}_p$-extension $K_\\infty$ of $K$. In particular, we show that under\nthe generalized Heegner hypothesis, if the $p$-localization of the generalized\nHeegner cycle attached to $f$ is primitive and certain local conditions hold,\nthen the Pontryagin dual of the Selmer group of $f$ over $K_\\infty$ is free\nover the Iwasawa algebra. Consequently, the Bloch--Kato--Shafarevich--Tate\ngroups of $f$ vanish. This generalizes earlier works of Matar and\nMatar--Nekov\\'a\\v{r} on elliptic curves. Furthermore, our proof applies\nuniformly to the ordinary and non-ordinary settings.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $p$ be an odd prime number and let $K$ be an imaginary quadratic field in which $p$ is split. Let $f$ be a modular form with good reduction at $p$. We study the variation of the Bloch--Kato Selmer groups and the Bloch--Kato--Shafarevich--Tate groups of $f$ over the anticyclotomic $\mathbf{Z}_p$-extension $K_\infty$ of $K$. In particular, we show that under the generalized Heegner hypothesis, if the $p$-localization of the generalized Heegner cycle attached to $f$ is primitive and certain local conditions hold, then the Pontryagin dual of the Selmer group of $f$ over $K_\infty$ is free over the Iwasawa algebra. Consequently, the Bloch--Kato--Shafarevich--Tate groups of $f$ vanish. This generalizes earlier works of Matar and Matar--Nekov\'a\v{r} on elliptic curves. Furthermore, our proof applies uniformly to the ordinary and non-ordinary settings.
论反双环$mathbf{Z}_p$塔上模态形式的布洛赫--加藤塞尔默群的结构
让 $p$ 是奇素数,让 $K$ 是虚二次域,其中 $p$ 被分割。让 $f$ 是一个在 $p$ 处有良好还原的模形式。我们研究了 $f$ 在 $K$ 的反环$mathbf{Z}_p$扩展 $K_infty$ 上的布洛赫--加藤塞尔默群和布洛赫--加藤--沙法列维奇--塔特群的变化。我们特别指出,在广义希格纳假设下,如果附在 $f$ 上的广义希格纳循环的 $p$ 局部是原始的,并且某些局部条件成立,那么 $f$ 在 $K_\infty$ 上的塞尔默群的彭特里亚金对偶群在岩泽代数上是自由的。因此,$f$的布洛赫--加藤--沙法列维奇--分类群消失了。这概括了马塔尔和马塔尔--涅科夫(Matar--Nekov\'a\v{r})早先关于椭圆曲线的工作。此外,我们的证明统一适用于普通和非普通环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信