Optically-Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging

Jaime Parra Raad, Daniel Lock, Yi-Yi Liu, Mark Solomon, Laura Peralta, Kirsten Christensen-Jeffries
{"title":"Optically-Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging","authors":"Jaime Parra Raad, Daniel Lock, Yi-Yi Liu, Mark Solomon, Laura Peralta, Kirsten Christensen-Jeffries","doi":"arxiv-2409.09031","DOIUrl":null,"url":null,"abstract":"Super-resolution ultrasound (SRUS) visualises microvasculature beyond the\nultrasound diffraction limit (wavelength($\\lambda$)/2) by localising and\ntracking spatially isolated microbubble contrast agents. SRUS phantoms\ntypically consist of simple tube structures, where diameter channels below 100\n$\\mu$m are not available. Furthermore, these phantoms are generally fragile and\nunstable, have limited ground truth validation, and their simple structure\nlimits the evaluation of SRUS algorithms. To aid SRUS development, robust and\ndurable phantoms with known and physiologically relevant microvasculature are\nneeded for repeatable SRUS testing. This work proposes a method to fabricate\ndurable microvascular phantoms that allow optical gauging for SRUS validation.\nThe methodology used a microvasculature negative print embedded in a\nPolydimethylsiloxane to fabricate a microvascular phantom. Branching\nmicrovascular phantoms with variable microvascular density were demonstrated\nwith optically validated vessel diameters down to $\\sim$ 60 $\\mu$m\n($\\lambda$/5.8; $\\lambda$ =$\\sim$ 350 $\\mu$m). SRUS imaging was performed and\nvalidated with optical measurements. The average SRUS error was 15.61 $\\mu$m\n($\\lambda$/22) with a standard deviation error of 11.44 $\\mu$m. The average\nerror decreased to 7.93 $\\mu$m ($\\lambda$/44) once the number of localised\nmicrobubbles surpassed 1000 per estimated diameter. In addition, the less than\n10$\\%$ variance of acoustic and optical properties and the mechanical toughness\nof the phantoms measured a year after fabrication demonstrated their long-term\ndurability. This work presents a method to fabricate durable and optically\nvalidated complex microvascular phantoms which can be used to quantify SRUS\nperformance and facilitate its further development.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution ultrasound (SRUS) visualises microvasculature beyond the ultrasound diffraction limit (wavelength($\lambda$)/2) by localising and tracking spatially isolated microbubble contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below 100 $\mu$m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to $\sim$ 60 $\mu$m ($\lambda$/5.8; $\lambda$ =$\sim$ 350 $\mu$m). SRUS imaging was performed and validated with optical measurements. The average SRUS error was 15.61 $\mu$m ($\lambda$/22) with a standard deviation error of 11.44 $\mu$m. The average error decreased to 7.93 $\mu$m ($\lambda$/44) once the number of localised microbubbles surpassed 1000 per estimated diameter. In addition, the less than 10$\%$ variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
用于超分辨率超声成像的经光学验证的微血管模型
超分辨超声(SRUS)通过定位和跟踪空间隔离的微泡造影剂,对超过超声衍射极限(波长($\lambda$)/2)的微血管进行观察。SRUS 模体通常由简单的管状结构组成,直径低于 100$\mu$m 的通道不可用。此外,这些模型通常易碎且不稳定,地面实况验证有限,其简单的结构限制了 SRUS 算法的评估。为了帮助 SRUS 的开发,需要具有已知生理相关微血管的坚固耐用的模型来进行可重复的 SRUS 测试。这项工作提出了一种方法来制作可用于 SRUS 验证的光学测量的耐用微血管模型。该方法使用嵌入聚二甲基硅氧烷的微血管负印模来制作微血管模型。具有可变微血管密度的分支微血管模型经过光学验证,血管直径小至$\sim$ 60 $\mu$m($\lambda$/5.8;$\lambda$ =$\sim$ 350 $\mu$m)。进行了 SRUS 成像,并用光学测量进行了验证。SRUS 平均误差为 15.61 $\mu$m ($\lambda$/22),标准偏差误差为 11.44 $\mu$m。一旦每个估计直径的局部微气泡数量超过 1000 个,平均误差就会下降到 7.93 $\mu$m ($\lambda$/44)。此外,制作一年后测量的声学和光学特性以及模型的机械韧性的差异小于 10%,这证明了它们的长期耐用性。这项工作提出了一种制造耐用且经过光学验证的复杂微血管模型的方法,这种方法可用于量化 SRUS 的性能并促进其进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信