On the thermodynamic limit of interacting fermions in the continuum

Oliver Siebert
{"title":"On the thermodynamic limit of interacting fermions in the continuum","authors":"Oliver Siebert","doi":"arxiv-2409.10495","DOIUrl":null,"url":null,"abstract":"We study the dynamics of non-relativistic fermions in $\\mathbb R^d$\ninteracting through a pair potential. Employing methods developed by Buchholz\nin the framework of resolvent algebras, we identify an extension of the CAR\nalgebra where the dynamics acts as a group of *-automorphisms, which are\ncontinuous in time in all sectors for fixed particle numbers. In addition, we\nidentify a suitable dense subalgebra where the time evolution is also strongly\ncontinuous. Finally, we briefly discuss how this framework could be used to\nconstruct KMS states in the future.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of non-relativistic fermions in $\mathbb R^d$ interacting through a pair potential. Employing methods developed by Buchholz in the framework of resolvent algebras, we identify an extension of the CAR algebra where the dynamics acts as a group of *-automorphisms, which are continuous in time in all sectors for fixed particle numbers. In addition, we identify a suitable dense subalgebra where the time evolution is also strongly continuous. Finally, we briefly discuss how this framework could be used to construct KMS states in the future.
论连续体中相互作用费米子的热力学极限
我们研究了$\mathbb R^d$中通过一对势相互作用的非相对论费米子的动力学。利用布霍尔茨(Buchholz)在解析代数框架内开发的方法,我们确定了CAR代数的一个扩展,在这个扩展中,动力学作为一个*-自变量组,对于固定粒子数,在所有扇区中都是时间连续的。此外,我们还确定了一个合适的稠密子代数,其中的时间演化也是强连续的。最后,我们简要讨论了未来如何利用这一框架来构建KMS状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信