{"title":"Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks","authors":"Qianfeng Gao, Zhiyuan Xu, Yu Yan, Wei Li, Yaya Song, Jing Wang, Maobin Zhang, Junming Xue, Huizhi Ren, Shengzhi Xu, Xinliang Chen, Yi Ding, Qian Huang, Xiaodan Zhang, Ying Zhao, Guofu Hou","doi":"10.1016/j.mtener.2024.101681","DOIUrl":null,"url":null,"abstract":"This study explores the integration of Au nanoparticles (NPs) into molybdenum oxide (MoO) thin films to form a MoO/Au NPs/MoO (MAM) stack. This stack serves as a hole transport layer (HTL) in silicon heterojunction solar cells, aiming to address the challenges of safety concerns and inefficient carrier transport. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy spectra demonstrate that the incorporation of Au NPs notably raises the work function of MAM to 5.85 eV and stabilize Mo concentrations at 94.07%. In addition, Au NPs effectively act as a shield against detrimental interactions with Ag, thereby improving the interfacial stability between the back electrode and HTL. This strategic enhancement facilitates the formation of surface plasmon polaritons, reduces the contact resistance to 41.19 mΩ cm, and boosts the quantum efficiency by injecting hot electrons and intensifying the surface electric field. These advancements lead to a significant enhancement in the fill factor and short-circuit current, leading to the development of a heterojunction solar cell with an increased efficiency () from 19.81% to 22.03%. This investigation underscores the transformative potential of engineered nanomaterials in elevating the performance and stability of photovoltaic devices, promoting the wider adoption of renewable energy technologies.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101681","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the integration of Au nanoparticles (NPs) into molybdenum oxide (MoO) thin films to form a MoO/Au NPs/MoO (MAM) stack. This stack serves as a hole transport layer (HTL) in silicon heterojunction solar cells, aiming to address the challenges of safety concerns and inefficient carrier transport. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy spectra demonstrate that the incorporation of Au NPs notably raises the work function of MAM to 5.85 eV and stabilize Mo concentrations at 94.07%. In addition, Au NPs effectively act as a shield against detrimental interactions with Ag, thereby improving the interfacial stability between the back electrode and HTL. This strategic enhancement facilitates the formation of surface plasmon polaritons, reduces the contact resistance to 41.19 mΩ cm, and boosts the quantum efficiency by injecting hot electrons and intensifying the surface electric field. These advancements lead to a significant enhancement in the fill factor and short-circuit current, leading to the development of a heterojunction solar cell with an increased efficiency () from 19.81% to 22.03%. This investigation underscores the transformative potential of engineered nanomaterials in elevating the performance and stability of photovoltaic devices, promoting the wider adoption of renewable energy technologies.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials