Approximate Controllability of Fractional Evolution System on Non-Dense Domain

IF 1.9 3区 数学 Q1 MATHEMATICS
Vikram Singh, Renu Chaudhary, Umesh Kumar, Sandeep Kumar
{"title":"Approximate Controllability of Fractional Evolution System on Non-Dense Domain","authors":"Vikram Singh, Renu Chaudhary, Umesh Kumar, Sandeep Kumar","doi":"10.1007/s12346-024-01135-4","DOIUrl":null,"url":null,"abstract":"<p>This article explores the existence and approximate controllability of integral solutions for Hilfer fractional evolution equations in a non-dense domain. Leveraging the well-known generalized Banach contraction theorem, we establish both the existence and uniqueness of the integral solution. Furthermore, we adopt a sequential approach to derive results related to approximate controllability, without relying on the compactness of semigroups or the uniform boundedness of nonlinear functions. To validate our findings, we present and discuss an illustrative example.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"215 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01135-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the existence and approximate controllability of integral solutions for Hilfer fractional evolution equations in a non-dense domain. Leveraging the well-known generalized Banach contraction theorem, we establish both the existence and uniqueness of the integral solution. Furthermore, we adopt a sequential approach to derive results related to approximate controllability, without relying on the compactness of semigroups or the uniform boundedness of nonlinear functions. To validate our findings, we present and discuss an illustrative example.

Abstract Image

非密集域上分数演化系统的近似可控性
本文探讨了非密集域中希尔费分数演化方程积分解的存在性和近似可控性。利用著名的广义巴拿赫收缩定理,我们建立了积分解的存在性和唯一性。此外,我们还采用了一种序列方法来推导与近似可控性相关的结果,而不依赖于半群的紧凑性或非线性函数的均匀有界性。为了验证我们的发现,我们提出并讨论了一个示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信