Melanie Glueck, Alexandra Lucaciu, Julien Subburayalu, Roxane Isabelle Kestner, Waltraud Pfeilschifter, Rajkumar Vutukuri, Josef Pfeilschifter
{"title":"Atypical sphingosine-1-phosphate metabolites—biological implications of alkyl chain length","authors":"Melanie Glueck, Alexandra Lucaciu, Julien Subburayalu, Roxane Isabelle Kestner, Waltraud Pfeilschifter, Rajkumar Vutukuri, Josef Pfeilschifter","doi":"10.1007/s00424-024-03018-8","DOIUrl":null,"url":null,"abstract":"<p>Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P<sub>1-5</sub>) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P’s alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length–influenced signaling and its implications for drug discovery.</p>","PeriodicalId":19762,"journal":{"name":"Pflügers Archiv - European Journal of Physiology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflügers Archiv - European Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00424-024-03018-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P’s alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length–influenced signaling and its implications for drug discovery.