A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mehmet Akman
{"title":"A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts","authors":"Mehmet Akman","doi":"10.1177/14750902241273992","DOIUrl":null,"url":null,"abstract":"Gulet-type yachts are one of the symbols of maritime culture with their unique hull forms and schooner or ketch-type riggings. In parallel with the targets aiming for decarbonization in the maritime industry, energy efficiency and emission control are on the agenda for these types of yachts. Driven by this motivation, a novel benchmark study for the gulet-type yachts is conducted to evaluate the energy efficiency and environmental impacts associated with the adoption of LNG or methanol as primary fuel alternatives to MDO. The benchmark study is constructed in two steps: Presenting the design and propulsion characteristics of existing gulets, followed by a detailed analysis of the energy efficiency and environmental impacts of using alternative fuels. Therefore, 57 gulets with round and transom sterns whose hull forms are analyzed, modeled and general characteristics are presented. After modeling, the resistance and effective power of hull forms are predicted using the Holtrop-Mennen method and CFD. The flow characteristics around the hulls are obtained and the results are validated using the previous experimental studies in the first step. Then, installed and computed engine capacities are compared, and the Annual Emission Ratio and Energy Efficiency Index (EEI) are calculated for environmental impact assessments. Finally, the applicability of using LNG or MeOH-fueled propulsion systems for gulet-type yachts is discussed considering energy efficiency and design. According to the results, transitioning to alternative fuels can increase the Energy Efficiency Index of gulet-type yachts by over 20%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241273992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gulet-type yachts are one of the symbols of maritime culture with their unique hull forms and schooner or ketch-type riggings. In parallel with the targets aiming for decarbonization in the maritime industry, energy efficiency and emission control are on the agenda for these types of yachts. Driven by this motivation, a novel benchmark study for the gulet-type yachts is conducted to evaluate the energy efficiency and environmental impacts associated with the adoption of LNG or methanol as primary fuel alternatives to MDO. The benchmark study is constructed in two steps: Presenting the design and propulsion characteristics of existing gulets, followed by a detailed analysis of the energy efficiency and environmental impacts of using alternative fuels. Therefore, 57 gulets with round and transom sterns whose hull forms are analyzed, modeled and general characteristics are presented. After modeling, the resistance and effective power of hull forms are predicted using the Holtrop-Mennen method and CFD. The flow characteristics around the hulls are obtained and the results are validated using the previous experimental studies in the first step. Then, installed and computed engine capacities are compared, and the Annual Emission Ratio and Energy Efficiency Index (EEI) are calculated for environmental impact assessments. Finally, the applicability of using LNG or MeOH-fueled propulsion systems for gulet-type yachts is discussed considering energy efficiency and design. According to the results, transitioning to alternative fuels can increase the Energy Efficiency Index of gulet-type yachts by over 20%.
关于小帆船使用替代燃料的能效和环境影响的基准研究
桅杆型游艇以其独特的船体形式和双桅帆船或凯奇型索具成为航海文化的象征之一。在实现海运业脱碳目标的同时,此类游艇的能效和排放控制也提上了日程。在这一动机的驱动下,我们针对小帆船型游艇开展了一项新的基准研究,以评估采用液化天然气或甲醇作为 MDO 主要燃料替代品所带来的能效和环境影响。基准研究分两步进行:首先介绍现有小帆船的设计和推进特性,然后详细分析使用替代燃料的能效和环境影响。因此,对船体形式为圆形和横截面船尾的 57 艘小帆船进行了分析、建模,并介绍了其总体特征。建模后,使用 Holtrop-Mennen 方法和 CFD 预测了船体形式的阻力和有效功率。第一步是获得船体周围的流动特性,并利用之前的实验研究对结果进行验证。然后,比较发动机的安装容量和计算容量,并计算年排放率和能效指数(EEI),以进行环境影响评估。最后,考虑到能效和设计,讨论了使用液化天然气或甲醇为燃料的推进系统对小帆船的适用性。结果表明,改用替代燃料可使小帆船的能效指数提高 20% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信