Brunn–Minkowski Inequalities for Sprays on Surfaces

Rotem Assouline
{"title":"Brunn–Minkowski Inequalities for Sprays on Surfaces","authors":"Rotem Assouline","doi":"10.1007/s12220-024-01792-6","DOIUrl":null,"url":null,"abstract":"<p>We propose a generalization of the Minkowski average of two subsets of a Riemannian manifold, in which geodesics are replaced by an arbitrary family of parametrized curves. Under certain assumptions, we characterize families of curves on a Riemannian surface for which a Brunn–Minkowski inequality holds with respect to a given volume form. In particular, we prove that under these assumptions, a family of constant-speed curves on a Riemannian surface satisfies the Brunn–Minkowski inequality with respect to the Riemannian area form if and only if the geodesic curvature of its members is determined by a function <span>\\(\\kappa \\)</span> on the surface, and <span>\\(\\kappa \\)</span> satisfies the inequality\n</p><span>$$\\begin{aligned} K + \\kappa ^2 - |\\nabla \\kappa | \\ge 0 \\end{aligned}$$</span><p>where <i>K</i> is the Gauss curvature.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01792-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a generalization of the Minkowski average of two subsets of a Riemannian manifold, in which geodesics are replaced by an arbitrary family of parametrized curves. Under certain assumptions, we characterize families of curves on a Riemannian surface for which a Brunn–Minkowski inequality holds with respect to a given volume form. In particular, we prove that under these assumptions, a family of constant-speed curves on a Riemannian surface satisfies the Brunn–Minkowski inequality with respect to the Riemannian area form if and only if the geodesic curvature of its members is determined by a function \(\kappa \) on the surface, and \(\kappa \) satisfies the inequality

$$\begin{aligned} K + \kappa ^2 - |\nabla \kappa | \ge 0 \end{aligned}$$

where K is the Gauss curvature.

Abstract Image

表面喷射的布伦-闵科夫斯基不等式
我们提出了黎曼流形两个子集的闵科夫斯基平均数的一般化,其中大地线被参数化曲线的任意族所取代。在某些假设条件下,我们描述了黎曼曲面上的曲线族,对于这些曲线族,布伦-闵科夫斯基不等式在给定的体积形式下成立。特别是,我们证明了在这些假设条件下,黎曼曲面上的恒速曲线族满足关于黎曼面积形式的布伦-明考斯基不等式,当且仅当其成员的大地曲率由曲面上的函数\(\kappa \)决定,并且\(\kappa \)满足不等式$$\begin{aligned}。K + \kappa ^2 - |\nabla \kappa | \ge 0 \end{aligned}$$其中 K 是高斯曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信