{"title":"The Projectivity of Compact Kähler Manifolds with Mixed Curvature Condition","authors":"Litao Han, Chang Li, Yangxiang Lu","doi":"10.1007/s12220-024-01789-1","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, Li–Ni–Zhu study the nefness and ampleness of the canonical line bundle of a compact Kähler manifold with <span>\\(\\textrm{Ric}_k\\leqslant 0\\)</span> and provide a direct alternate proof to a recent result of Chu–Lee–Tam. In this paper, we generalize the method of Li–Ni–Zhu to a more general setting which concerning the connection between the mixed curvature condition and the positivity of the canonical bundle. The key point is to do some a priori estimates to the solution of a Mong-Ampère type equation.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01789-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent paper, Li–Ni–Zhu study the nefness and ampleness of the canonical line bundle of a compact Kähler manifold with \(\textrm{Ric}_k\leqslant 0\) and provide a direct alternate proof to a recent result of Chu–Lee–Tam. In this paper, we generalize the method of Li–Ni–Zhu to a more general setting which concerning the connection between the mixed curvature condition and the positivity of the canonical bundle. The key point is to do some a priori estimates to the solution of a Mong-Ampère type equation.